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Abstract

This thesis presents a formalized framework for comparing the structure and se-

mantics of software architectures. The framework uses object diagrams for analyzing the

structure of the architectures and the axiomatic approach for analyzing the semantics. This

framework is used to compare the Object Connection Update (OCU) model (developed

by the Software Engineering Institute) against four other software architectures: VHDL

defined by Lipsett, Metall defined by Honeywell, pRapide defined by Luckham, and hier-

archical software systems as defined by Batory. The goal of the comparison was to evaluate

the OCU model for suitability within prototype application composition and generation

systems. This research concluded that the OCU model has all the elements necessary for

use in application composition and generation systems. Additionally, the framework iden-

tified several common elements in all the software architectures. These common elements

may lead to the development of a "meta-model" for software architectures.
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Alternative Architectures for

Domain-Oriented

Application Composition and Generation Systems

I. Introduction and Problem Statement

1.1 Background

Software engineering will not become an engineering discipline until software en-

gineers develop software systems the way engineers develop systems. Key elements of

an engineering discipline are found in how engineers formulate problems, use technology

bases, perform design by composing components and produce solutions (10). The most

prominent engineering element missing from software engineering is the extensive amount

of reuse from a technology base. Public documentation in a technology base is reviewed for

possible reusable components and the necessary components are extracted to achieve a de-

sign. Engineers also have a way of measuring the success of the design before construction

actually begins. This success is measured by employing a scientific, theoretical foundation

to verify by systematic calculation that a proposed design satisfies the specifications. Once

a design is constructed and confidence in it grows, it is added to the public knowledge base

for future reuse (14). This is how engineering has sustained its level of development over

the years.

In contrast, software engineers currently do not employ techniques relying on the

composition of reusable components, a published knowledge base, or methods for measuring
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success prior to development (3). By starting from scratch each time, a software engineer

spends extensive amounts of time debugging the whole system. If the analyst had employed

reusability (via composition), testing would be reduced, since the only area that would

need to be tested is the overall design (given that the individual components came from a

certified technology base). This would preclude testing down to the individual component,

since the component came from a knowledge base of established confidence. Furthermore,

if the analyst used formal methods as a means of verifying the overall system design (by

use of proofs), confidence in the system could be established prior to system development.

As mentioned above, engineers reuse components. These components are nothing

more than models. Models can be thought of as a codified body of scientific knowledge

and technology presented in a (re)usable form (10). As such, models have a way to

influence or interface with their environment. Thus, models are merely representations of

real world objects. These models are what an engineer extracts from a public knowledge

base to aid in design. At present, software engineers are just discovering the advantages of

reuse by employing object-oriented analysis and design. It has been shown that software

developed using the object-oriented methodology has very high cohesion within the object

(12). Further, these systems demonstrate very loose coupling between the objects (12).

The loose coupling of the objects and high cohesion within an object have made it easier

to reuse software components.

Part of designing a software system requires an analysis of the domain of the problem

space by the software engineer. Prior to systems analysis, the software engineer creates a

model of the software system, trying to generalize all subsystems in the application domain

by means of a domain model that transcends specific applications. If this is successful,
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the next step is to define a domain-specific language. This language becomes the model

and is used to describe objects and operations common to that domain. A more formal

definition would be "a language with syntax and semantics designed to represent all valid

actions and objects in a particular domain" (19).

During system design, the software engineer chooses a software architecture that

logically follows from the domain model. Webster's dictionary defines architecture as "a

method or style of building." To apply this definition to a software system would imply

"the way objects (models) are composed is defined by an architecture." Another way to

define software architecture is that a software architecture imposes a uniform style on the

structure of the software system (1:110). A software architecture is a selection (from a

technology base/public knowledge base) of models and composition rules that defines the

structure, performance, and use of a system relative to a set of engineering goals (14:8).

Thus, an architecture is a way of composing models, using engineering practices to achieve

an overall system design.

While the software architecture serves as the framework for the design, this concept

is insufficient by itself for supplying the additional details required for a specific design.

Additional domain knowledge is still needed to instantiate components of the architecture

and develop optimized algorithms for the problem domain. These details may be provided

by use of the domain-specific language. Thus, the general concept of a software architecture

and the specific design details provided by domain-specific languages are combined to create

what can be termed a domain-specific software architecture (DSSA) (5).
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So, until software engineers employ extensive reuse of -oftware components (such

as models or objects), incorporate a means of verifying a design prior to implementation

(formal methods), and establish a software architecture that easily incorporates reusable

components, they will continue to produce software systems with large amounts of errors.

These systems will continue to take a large amount of resources during development and

may or may not meet user requirements.

1.2 Problem

To help push software engineering into more of a true engineering discipline, the Air

Force Institute of Technology (AFIT) has prototyped a domain-oriented application com-

position and generation system called Architect. It is based on integrating the concepts

of software architectures and formal domain models. The purpose of Architect is to allow

an application specialist to input system specifications in a domain-specific language. Ap-

plication specialists are sophisticated "users"; they are familiar with the overall domain

and understand what the new application must do to meet requirements; they provide the

application-specific information needed to specify an application (20:3-2). After verifying

that the new composition behavior meets the specifications, application specialists can

have Architect synthesize the appropriate implementation of the specification. Synthesiz-

ing a specification is the transforming of the specification into the language of the target

system.

At the center of Architect is a technology base used to store domain and software

engineering information. This technology base consists of formal specifications developed

using the Refine formal specification language. The software architecture of Architect has
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been implemented using the Object Connection Update model proposed by the Software

Engineering Institute (SEI) (14). Architect's initial implementation did not incorporate

all of the OCU methodology. One of the focuses of this thesis effort is on adding additional

functionality to Architect. Architect's new functionality and corresponding implementa-

tion details are presented in subsequent chapters.

Another focus of this research is on the suitability of the OCU model for the software

architecture of Architect. The software architectural model within Architect must be

flexible enough to allow for future enhancements, as well as provide the capability to

accommodate a technology base with components from different domains. To aid in the

establishment of the technology base, Architect should allow for the inclusion of artifacts

from other domains. However, prior to allowing artifacts from other domains, a mapping

between software architectures used in different domains must be established. The first

step in developing a mapping between software architectures is to establish a framework

for comparing software architectures.

1.2.1 Problem Statement.

Develop a formalized model which serves as a framework for comparing software
architectures. Include in this framework a consistent standard for analyzing
software architectural structures and analyzing the semantics of the architec-
tural components.

1.3 Scope

The scope of this research includes the development of a standard framework for

comparing software architectures based on:
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1. Object Diagrams, as presented by Rumbaugh (22), as the representation for com-

paring structural components of an architecture. I will not specify complete object

models with methods and attributes per (22), as the focus of this thesis is on archi-

tectural entities and their relationships.

2. An axiomatic approach comparing the semantics of the components that appear

similar between architectures (4, 11). Additionally, the semantic analysis of the ar-

chitectural components is limited to identifying the preconditions and postconditions

that must be maintained as some abstract program is executed. The development of

a standardized abstract program language and corresponding execution function is

left for future research.

This thesis also includes the implementation of an event-driven simulation capability

within the Architect prototype. More specifically, I address the changes that need to be

made to the OCU architectural model and its simulation capabilities within Architect

to support an event-driven mode of execution. These changes are limited to identifying

structural changes to the subsystems and primitives, as well as the execution capabilities of

the subsystems and the primitives within Architect. It does not include the development

of an application executive, as that is addressed in a separate effort (29). In essence, the

application executive p-c.i Les an operating system type environment with services.

1.4 Big Picture

Figure 1.1 shows the overall research effort that is being conducted at AFIT. My

particular area of research is isolated to the Application Comporser block in the lower left

hand comer.
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Figure 1.1 Architect's Software Composition and Generation Toolset
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1.5 Sequence of Presentation

The order of presentation for the rest of this thesis is as follows. Chapter II provides

some example definitions for a software architecture. It also presents some identifiable soft-

ware architectures used in industry today. Chapter III details requirements for comparison

of software architectures, as well as the concept of operations for an event-driven simulation

capability within Architect. Chapters IV and V present the methodology for comparing

the alternative software architectures and the results of employing this methodology on

the five architectures. Chapter VI provides detailed design of the event-driven capability

within Architect, while Chapter VII shows how the event-driven capability was validated.

Finally, the results and conclusions for this research effort are presented in Chapter VIII.
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II. Literature Search

2.1 Introduction

The previous chapter presented Webster's definition of architecture as: "a method

or style of building". Also presented were several definitions for software architecture. In

this thesis, a software architecture will be defined as "...a selection (from a technology

base/public knowledge base) of models and composition rules that defines the structure,

performance, and use of a system relative to a set of engineering goals" (4). In this chap-

ter, I examine some identifiable software architectures. Next, I discuss Domain-Specific

Software Architecture and define all the terms associated with this architectural model.

Finally, I provide examples of the use of some of the different software architectures.

2.2 Software Architectures

The following sections present a description of some of the common software archi-

tectures used in system design.

2.2.1 Layered Architecture. Software designed as an hierarchical collection of

components is a layered architecture; each level of the software is built using the software

components from a lower layer. Ideally, components at each layer are independent of each

other. Figure 2.1 presents a conceptual model of a layered architecture. The communi-

cation in a layered architecture is one-way; that is, the components only know about the

layers below and communicate with only those lower modules; they have no knowledge

of what is in the layers above (22:200)(23:72). Examples of a layered architecture are

operating systems and data base management systems.
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Users

Figure 2.1 Layered Systems(3)

2.2.2 Batch Transformation or Pipe Architecture. A batch transformation ar-

chitecture is a sequential input-to-output process, in which inputs are supplied at the

beginning of the pipe and outputs are presented at the other end of the pipe. Figure 2.2

presents a batch transformation architecture. The architecture is broken down into stages

where each stage performs one part of the transformation on the input data. Each stage

only knows about the stages immediately preceding it and following it, as well as the in-

puts and outputs associated with its particular stage. There are no interactions with the

outside world once the transformation starts (22:212).

Figure 2.2 Filters and Pipes(3)
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2.2.3 Real-Time Architectures. A real-time architecture is used when the timing

and performance criteria of a particular system are considered essential to the design; i.e.,

for any critical actions that the software must perform, the action must be done in an

absolute interval of time. Real-time architectures are usually complex and involve inter-

rupt handling, prioritizing tasks, and coordinating resources among multiple processors.

Subsequently, their software is often non-logically structured (22:216). An example of a

real-time system is a flight control system on any aircraft.

2.2.4 Object-Oriented Architecture. An object-oriented architecture contains

models which encapsulate both data and behavior into a single entity (22:1). Models within

an object-oriented architecture are representations of real world entities. Each model or

object contains attributes and operations; the attributes contain the state information of

the object, while the operations are used to change the state of the object. An object-

oriented architecture consists of objects changing the state of other objects by invoking

the other's operations via message passing.

2.2.5 Production System or Rule-Based Architecture. A production system or

rule-based architecture consists of a set of rules, a knowledge base, a control strategy, and

a rule applier. Figure 2.3 is a graphical representation of a rule-based system. The set of

rules provide a description of the operation to perform when a particular rule is applied.

The knowledge base contains information applicable to the task at hand. The control

strategy specifies the order in which the rules are compared to the data, and it has a way

of deconflicting rules when multiple rules can be applied. Finally, the rule applier applies
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the rule selected as specified by the control strategy (21:36). An example of a rule-based

system is a hospital's diagnostic station.

Knowledge Base

Figure 2.3 Rule-Based Systems(3)

2.2..6 Blackboard Architecture. A blackboard architecture consists of knowledge

sources, a blackboard, and a control system. The knowledge sources (ks) are a set of inde-

pendent modules that contain the system's domain-specific information. The blackboard

is a shared data structure through which the knowledge sources communicate with each

other (see Figure 2.4). Finally, the control structure determines which knowledge source

has access to the blackboard to perform some operations or communications. A blackboard

architecture operates by allowing the knowledge sources to post items on the blackboard,

read items from the blackboard, or act upon messages posted on the blackboard (21:439).

2.3 Software Architectures Versus Object-Oriented Design

Software architectures have been defined as a style of composing software compo-

nents; this should not be confused with the term object-oriented architecture. Object-
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Blackboard
(shared data)

Figure 2.4 Blackboard System(3)

oriented architecture allows the software system designer to "abstract-out" components of

a software architecture; this abstraction then allows the system developer to focus on the

high-level design issues (22). The use of an object-oriented design in the development of

a system's software architecture allows the components of the arcd ecture to be loosely

coupled, while providing a high level of cohesion within the component. The loose coupling

and high cohesion is achieved through the encapsulation of the behavior and data structure

in the software (22:1). To use the pipe architecture as an example, the pipes or filters can

be designed as separate entities or objects under the object-oriented paradigm. Data is

passed between the fiters as previously shown in Figure 2.2, but each filter performs its

operations on the data by having one of its methods invoked. This does not violate any
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principles of a filtering architecture; that being each stage knowing only of its predecessor

and its successor.

2.4 Domain-Specific Software Architectures (DSSA)

Before a good definition of DSSA can be given, some additional background termi-

nology is needed to complete an understanding of DSSA, as well as distinguish DSSA from

other software architectures.

The first term that needs to be understood is "model". A model, as presented in

Section 1.1, is a codified body of knowledge in reusable form (10). This implies that there

are some standard interfaces for communicating with and controlling this model. Once the

interfaces are standardized, this model is a semi-autonomous set of code that can be used

in the composition of larger systems. In other words, the model is reusable.

The important aspect of a model is its codified body of knowledge. This knowledge

represents the information needed to accomplish its behavior. Most of the information is

local to the model; other information may have to be imported via the communication

interface (14).

Models are the basis for DSSAs. The next step in understanding a DSSA is to

understand what is meant by domain analysis and domain-specific language. Domain

analysis is the generalization of a problem area, where a problem area is a narrow area of

interest. Prieto-Diaz defines domain analysis as the process used to identify, capture, and

organize information in a domain of interest (19:47-48). As a result of domain analysis,
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certain entities become evident within the problem area. These entities evolve into models,

which are used in the subsequent development of the system.

A domain-specific language is developed as part of a domain analysis. The enti-

ties/models formalized from the domain analysis become part of the domain-specific lan-

guage. The domain-specific language includes any operations, actions or communications

between the models of the problem area.

A DSSA includes a software architecture (drawn from the domain analysis), domain

models, a domain-specific language, and software engineering knowledge (18). A DSSA

defines a way of composing domain models, using a set software architecture to solve a

family of related software problems (18). The domain-specific language defines the actions

and operations of the domain models within the DSSA. Finally, the software engineering

knowledge is captured in both the software architecture and the domain models within the

system.

Lowry defines an architecture as a high level description of a generic type of software

system: "it includes functional roles of major software components and their interrela-

tionships stated in an application oriented language for use in reasoning and composing

prototype components" (16). The preceding sentence describes, in a general sense, an

application composition and generation system, which is a transformation system for a

problem domain or space (16). Further, a transformation system is a combination of spe-

cialized components and software engineering knowledge so that the software is developed,

modified, and maintained at the specification level and automatically transformed to im-
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plementation or target code (16). This explicitly describes Architect, which is a ongoing

research effort (3, 28, 20).

2.5 Example Systems and Their Software Architectures

The following are some software architectures currently being employed or defined

by the software industry today.

2.5.1 DSSA for Intelligent Guidance, Navigation and Control. Honeywell and

the University of Maryland are currently developing a software architecture for intelligent

(adaptive) guidance, navigation and control (1). They are proposing a layered architecture

with tools to support the different layers within the architecture. Their architecture will

be amenable to automatic analysis, configuration, and population with very heavy reliance

on formal methods. Ultimately, they are striving for formal verification in-the-large which

will lead to improvements in overall quality in the system being developed. The user will

specify source modules to be included in a system, how these modules are to be scheduled,

and how these modules are to communicate. The tool set performs the hard real-time

scheduling, sensitivity analysis, timing, data, reliability analysis and then automatically

assembles the modules into the final system, generating all necessary code.

2.5.2 DSSA for Avionics System. IBM, along with researchers from MIT, Cor-

nell, the University of Texas at Austin, and the University of California at Irvine, is striving

to create a workstation-based environment to support the development, maintenance and

upgrade of avionics systems with an order-of-magnitude improvement in quality and pro-

ductivity over current approaches through the reuse of large portions of well-designed and
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documented software (8). Any system for navigation, guidance, and flight director must

manage the routing of source data from suppliers to consumers with minimum handling

of this data to prevent "data aging". Their approach to DSSA is to use constraint-based

reasoning tools to guide the user, using domain-specific terms, in selecting adaptation val-

ues for the system under development. The models are automatically assembled into an

executable prototype, which may be run to examine the system behavior. IBM proposes

doing a domain analysis of the problem space to identify common concepts. The concepts

to be modeled will have well defined interfaces and will include flexible combination mech-

anisms. IBM believes that these formal interfaces will characterize the semantics of each

model(behavior), entry and exit constraints, performance and timing constraints, depen-

dency constraints (layering), and sequencing. Since the architecture is set and provides a

structure or solution for a class of problems, the analyst can select and adapt these models

for the task at hand using the defined architecture.

2.5.3 VHDL. VHDL (VHSIC (Very High Speed Integrated Circuit) Hardware

Description Language) was designed by the U. S. government to standardize the VLSI

(Very Large Scale Integration) chip design process and manage the large volumes of data

needed in designing a new circuit. VHDL is a standardized design and description language

that integrates three different models into one. These interdependent design models are the

behavioral model, timing model, and the structural model. VHDL has been designed such

that the structural model and behavioral model can be intertwined where their individual

boundaries are blurred within an application, or the structural model and behavioral model

can be distinct and separate entities within an application. The smallest executable artifact
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in VHDL is an Entity. An Entity takes signals and internal attributes and generates new

signals. Similarly, since an entity may consist of components, further transformations of

in-signals are possible (15).

2.5.4 jRapide. pRapide is an executable architecture definition language in-

tended primarily for defining time-sensitive concurrent systems. This language is derived

as a subset of the RAPIDE-1 prototyping language which contains object-oriented fea-

tures and reactive programming constructs. pRapide is an event processing language,

where events are tuples of information. The information in an event may include: orig-

inator, consumer, time, activity to do, activity done, data values, etc. The semantics of

pRapide are based on event processing; that is, generating events, sending events, receiv-

ing events, and deciphering events. The authors of 1LRapide believe this to be the most

general way to model communications between components that are computing indepen-

dently. Subsequently, synchronous and serial communications can be modelled in terms of

event processing as well (17).

2.5.5 OCU. The software architecture used by Architect for modeling a system's

behavior, is the Software Engineering Institute's (SEI) Object Connection Update (OCU)

(14). The major component or level of abstraction within the OCU model is the subsystem.

A subsystem consists of objects, an import area, an export area, and a controller. The

controller is a self-contained unit; it is the locus of the mission. Subsequently, the objects

within the subsystem provide the state of the subsystem. The controller of a subsystem is

only aware of subordinate objects for which it has control over; it is unaware of any other
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superior or sibling subsystems. The only interface a subsystem has with its environment

is through the import and export areas.

Due to the way the SEI has defined objects within the OCU model (with standard-

ized interfaces and operations performed by the objects), objects and subsystems can be

composed almost arbitrarily. The architecture does not impose any constraints on object

or subsystem composition as long as the data interfaces to these components are standard-

ized.

The highest level of abstraction within the OCU model is the Application Executive.

The Application Executive controls subsystem activities and scheduling.

2.5.6 Conclusion. My research revolves around enhancing the Architect proto-

type application composition and generation system as defined by (16). All the software

architecture projects presented in Section 2.5 of this chapter are targeting their software

for a particular application and domain. At AFIT, the research is focused on developing

an application composition and generation capability that transcends many domains. My

particular research is focused on uncovering commonalities between software architectures

by identifying a suitable framework for comparing different architectures. The common-

alities among architectures should eventually lead to more than just code reuse, it could

lead to design reuse. Design reuse is the reuse of the knowledge that went into designing

a software system or m.-a)i.er component (architectural fragment) of the system.

The initial implementation of the OCU model in Architect has the domain-specific

information of the problem space captured at the primitive level. Most of the higher-level

design information has been captured in the software architectural model, OCU. As such,
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the present software architecture in Architect does not directly incorporate domain-specific

information. This provides Architect with the capability to cross domain boundaries.

2-12



III. Evaluation of Architect's Software Architecture

3.1 Introduction

Architect is a prototype implementation of an application composition and genera-

tion system; as a result, there are certain aspects that still need to be investigated and

incorporated into Architect. This research effort focuses on identifying any additional

software architectural components required to support the OCU concept of an Application

Executive, comparing the OCU software architecture against other software architectures,

as well as implementing several already defined enhancements.

3.1.1 Background. The initial implementation of Architect by Anderson, Ran-

dour, and Weide (3, 20, 28) produced a limited capability application composition and

generation system. For example, Architect could only simulate models that exhibited a

sequential mode of behavior (as defined by a subsystem's Update algorithm). Addition-

ally, the system was validated using only two domains, one pedagogical and the other logic

circuits, neither of which exhibit any complex behaviors such as feedback.

3.1.2 Current Research Issues.

1. Application Executive: More research is needed to define the application executive

role of an application composition and generation system. Welgan is presently defin-

ing a domain model for an application executive (29). As part of his domain model

validation, the application executive within Architect will be implemented based on

the OCU model. The application executive will be a collection of objects composed

into a subsystem that provide executive services to the application being modelled.
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An additional requirement identified by previous researchers was the incorporation

of different modes for simulating an application's behavior. The additional modes of

execution all incorporate the processing and management of events. These different

modes of execution are addressed in (29); however, defining the structure of events,

along with their processing and management within subsystems and primitives is

accomplished in this thesis.

2. Incorporation of Additional Domains: Additional domains also need to be modelled.

Waggoner and Warner are populating Architect's technology base with new domains;

the new domains are missile guidance components and digital signal processing com-

ponents, respectively (26, 27). Furthermore, Waggoner is also implementing a time

delay to the initial digital circuits domain (26).

3.2 Review of Alternative Architectures

To evaluate the OCU architectural model, other architectures were reviewed and

analyzed. The architectures are either in use today as a fully functional software set or

are being developed. The software architectures reviewed were VHDL (15), MetaH (25),

/ARapide (17) and IBM ADAGE (8, 6).

3.2.1 Determine a Common Framework. As part of the comparison of the alter-

native architectures to the OCU model, a framework was needed that would adequately

describe all five of the architectures. Identifying a common framework for comparing ar-

chitectures is recommended by Allen and Garlan in (2:1). This framework needs to allow

for the structural analysis of each software architecture, as well as the comparison of the
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behavior of each of the architectural components within an architecture and among archi-

tectures. The framework developed during this research is presented in Chapter IV.

3.2.2 Enhancements Based on Alternative Architecture Analysis. As mentioned

in Section 3.1.1, previous research identified a need to incorporate events and event process-

ing within Architect. Since events are not included in the SEI document, the implemen-

tation considerations of events within the OCU model should stay within the spirit of the

OCU model (14). In other words, event properties incorporated in the OCU architecture

in Architect should not violate established properties of the OCU model.

The incorporation of events led to altering the Refine implementation (within Archi-

tect) of the OCU architecture model to include events as part of the architecture. Adding

events required including event processing and event management within the OCU exe-

cution model. The implementation details of event processing and event management are

discussed in Chapter VI.

3.2.3 Event Processing. The initial step of incorporating events into the OCU

model of Architect was to identify the events processed by a subsystem. Since Architect

involves several research efforts (29, 26, 27, 9), a consensus by research members was needed

in the identification of events and event types. The consensus resulted in two different

classes of events being identified: application events and executive events. As the names

of the events imply, the target of each class of event is either the application subsystem

being modeled or the executive subsystem of the application executive. Different event

scenarios highlighted that all subsystems need to manage (route) all event types; however,

the actual processing of events is left to the appropriate subsystem. That is, the executive
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subsystems process executive events and the application subsystems process application

events.

The goal of adding event processing was to enhance Architect's OCU software archi-

tecture. This enhancement included defining the structure and information applicable to

the application events. As a result, three application event types were identified: Update,

SetState, and NewData. The Update event is used to tell a subsystem or primitive to

execute. Likewise, the SetState is used to set new attribute values within a primitive to

establish its new state. Finally, the NewData event is passed to an independent subsystem

by the executive to indicate to the subsystem that it has new data in its import area.

The next step in incorporating events into Architect was to modify the simulation

capabilities within the present implementation of the OCU model to handle events. As part

of incorporating event processing, we had to preserve the sequential processing capability

mentioned in Section 3.1.1. Additionally, not only was the passing of events in the execution

of the application important, but the persistence of the events had to be maintained. This

persistence increases Architect potential for modelling truly concurrent systems where

event causality is important. The persistence requirement implied modification of the

subsystems to capture and hold events being sent to the subsystem, as well as capturing

events that the subsystem may have originated. Since Architect has a behavior simulation

capability, the inclusion of events and event processing imposed changes to the application

execution functions within Architect. The original execution programs only allowed for

sequential execution of an application as derived by the update algorithm of a subsystem.

The new execution programs had to allow for the processing and handling of events within
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the subsystems. Further, the behavior simulation environment required the addition of

some new functions allowing events to be created during the simulation of an application.

With the inclusion of events and an event-driven simulation capability within Archi-

tect, the application specialist does not input an execution algorithm as is done with the

sequential mode of execution. This forced changes to the semantic checks within Architect.

The new semantic checks determined whether an update algorithm within the controller

of a subsystem is legal or not.

Introducing events to subsystems is of little use unless the subsystem knows what

to do with the event. The controller of a subsystem was enhanced to evaluate events it

receives to determine if it needs to process the event or route it to another subordinate

subsystem. The event implementation also required the subsystem's controller to know

how to actually route the event to any subordinate subsystems. On the other hand, if

the controller of a subsystem receives an event that it is to process, it needs to interpret

the event and take some action based on the event and event information received. The

operational concept of event processing and handling within a subsystem is provided in

section 3.4.

3.3 Enhancements As a Result of Adding New Validating Domains

Research involving comparison of the OCU software architectural model to other soft-

ware architectures may not readily identify all the potential shortcomings within the OCU

model. While the comparisons with the other architectures may identify a component that

should be part of the OCU model, it may not identify how to properly incorporate the this

component into Architect's implementation of the OCU model. Further, with the limited
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domain analysis of the few problem spaces that are now in Architect's technology base,

the new component "may appear" to work. However, as more domains are incorporated

into Architect's technology base, it may be discovered that the initial implementation of

the architectural component was inadequate. The shortcomings of any new architectural

component may only be identified by incorporating new validating domains into the OCU

model.

To illustrate the above fact, the initial implementation of the OCU SetState oper-

ation within Architect was inadequate for the event-driven simulation capability. A new

SetState operation was needed to pass more information than originally required by the

sequential model of execution. Additionally, any use of time delays required a primi-

tive's present state to be persistent until a point in time in the future. By modifying the

functionality of the OCU SetState operation, we were able overcome simulation rollback

problems regarding a primitive's state. This modification allowed a primitive, at a future

time (through simulating a delay), to make its new state available.

One of the other research efforts at AFIT is to define a domain model for an ap-

plication executive (29). As presented in Section 3.1.1, the validation of the application

executive domain model will be through the implementation of the OCU-based domain

model into Architect. The incorporation of this application executive domain model into

Architect forced additional refinements to the current implementation of the OCU model.

Mainly, the imports and exports for subsystems required altering. In keeping with SEI's

notion of the imports and exports, as well as copying an idea of abstraction from (3, 20)1,

'The consolidation of the imports and exports for a subsystem's subordinate primitive at the subsystem
level with pointers back to the owning primitive
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Figure 3.1 Two Independent Subsystems within Architect

the imports and exports were consolidated into an import area and export area of the

highest level (superior) subsystem of an independent subsystem. An independent sub-

system can be considered a hierarchical structure of subsystems and primitives that is a

self-contained composition. Figure 3.1 shows two independent subsystem with imports and

exports located at the superior subsystem.

The two subsystems in Figure 3.1 do not exhibit a parent-child relationship, ,Uor do

they share the resources of their subordinate objects. Independent subsystems only share

information via the import and export areas; furthermore, an independent subsystem is

unaware of the existence of any other subsystems. Finally, an independent subsystem

exhibits a complete behavior.

Since the inclusion of the application executive required multiply independent sub-

systems to communicate, there needed to be a central place to find an independent sub-

system's imports or exports. This consolidation of imports and exports of an independent
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subsystem had to keep with the SEI's intention of anonymity of objects (subsystems and

primitives). Further, this anonymity had to allow for loose coupling between objects in a

composition (12).

3.4 Operational Concept for Event Processing

The application composition process as defined in (3, 20, 28) has not changed with

the incorporation of events; changes are restricted to the execute and semantic check

requirements. The highlighted boxes in Figure 3.4 emphasize the areas of the overall

system design changed to allow the processing and management of events. There are

additional changes required to fully implement event processing in Architect; however,

the focus of this research was with the changes required at the subsystem and primitive

level. The servicing of events by the application environment, event management for a

simulation, and the specification of the initial events for an application within Architect is

addressed in (29).

With the addition of an event-driven simulation mode, Architect must now query the

application specialist during composition for the execution mode of the application. This

information is retained as part of the application's definition and made available to other

Architect components upon request. A conceptual model of both the non-event-driven

mode of execution and event-driven mode of execution within a subsystem can be seen in

Figures 3.3 and 3.4, respectively.

After the application specialist finishes composing a new application, he is still re-

quired to run a semantic check against the composition. The semantic checks have been

changed to check for any Updates in the update algorithm of the controller of an event.
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driven subsystem. Although this is required by the non-event-driven mode of Architect, it

is illegal in the event-driven mode.

Once the semantic checks are passed, the application specialist can execute an ap-

plication. The initial set of events that are needed by Architect to start the execution of

an application are predetermined by the application specialist. After composing an appli-

cation, Architect prompts the application specialist for the initial set of events required

for the application in order to initiate the simulation of the application's behavior. The

prompting for initial events and their processing is addressed in (29, 9).

After execution starts, the event manager of the application executive selects an event

to process. The event manager interprets the event and determines the subsystem that

needs to process the event; it then passes the event to the InEvent area of the appropriate

independent subsystem. Finally, the application executive passes the flow of control to the

independent subsystem that received the event.

Upon receiving flow of control from the executive, the subsystem's controller checks

its InEvent area and selects an event from the InEvent area.

The controller interrogates the event and decides what needs to be done next:

9 If the event is for this particular subsystem, the controller processes the event and

invokes the appropriate subordinate primitive's operation, based on the event type.

As an example, if the subsystem receives an Update event for one of its primitives,

then the controller will invoke the particular primitive's Update algorithm. When

the primitive finishes the operation, any new events generated are passed from the

3-11



primitive back to the superior subsystem, which returns them to the application

executive.

* If the event is not for this particular subsystem but for a subordinate subsystem, the

subsystem places the event in the subordinate subsystem's InEvent area and passes

the flow of control to the subordinate subsystem.

Subsystems do not do any further processing on events that are forwarded from subordinate

objects; subsystems only process events that are received from other invoking subsystems.

After a subsystem has processed all events in its InEvent area, it passes all newly generated

events in its OutEvent area back to the caller. Finally, before passing flow of control back

to the caller, the subsystem clears both the InEvent and OutEvent areas.

3.5 Summary

Architect's initial implementation employed a subset of the OCU model as defined

by the SEI. This thesis focuses primarily on defining a framework for comparing software

architectures, and determining the suitability of the OCU architecture model for use in

application composition and generation systems.

This research also includes expanding the OCU model within Architect to incorporate

events and event processing. This chapter discussed the changes to the subsystem and

primitive structure and the simulation capability as a result of incorporating events, as

well as presented an operational concept for event processing within Architect. Since the

initial documentation on the OCU model does not discuss events, the event types and

3-12



structure of the events had to be identified in addition to any other requirements for event

processing and management.

Subsequent chapters of this thesis describe the framework for comparing software ar-

chitectures, the results of comparing the alternative architectures with the OCU model, the

detailed design for events and event-driven simulation within Architect, and the validation

of event processing within Architect.
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IV. Software Architecture Comparison Methodology

4.1 Introduction

This chapter develops a framework for comparing software architectures. The frame-

work includes a way to compare software architectures both syntactically (structurally)

and semantically (behaviorally).

4.2 Framework for Comparing Software Architectures

As mentioned in (3:7-5) and Section 1.2, the OCU model needed to be further eval-

uated for its suitability as the software architectural model for an application composition

and generation system. In an attempt to further evaluate the OCU software architecture

model, I chose four other software architectures to evaluate against it. These software

architectures are MetaH as defined by Honeywell (25), VHDL as defined by Lipsett (15),

pRapide as defined by Luckham and Vera (17), and hierarchical software systems as defined

by Batory (6, 8). In order to accurately compare the different architectures, a framework is

needed that captures the salient points of each architecture. Furthermore, the framework

needed to be capable of being applied to all the architectures being compared.

The methodology for describing an architecture employed what is commonly used to

describe any object: a visual description of the object with some description of its behav-

ior. This perspective for evaluating architectures closely correlates to Vestal's attempt to

compare architectural description languages (24). He attempted to compare the languages

syntactically (structurally) as well as semantically (behaviorally).
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4.2.1 The Syntax of the Software Architectures. A method was needed to capture

the objects within a software architecture and their relationships. For this purpose, Coad,

Yourdon, and Rumbaugh recommend object diagrams (7, 22). The object diagrams for

each architecture are organized in such a way to show structural similarities between the

architectures, as well as between the objects within an architecture.

4.2.2 The Semantics of the Software Architectures. Structural comparison is not

enough to substantially compare the architectures. Just because two objects are struc-

turally the same does not imply they are the same in other respects. For example, a visual

comparison of a Repeat- Until and a Do- While loop reveals that both iterate over a set of

program statements a number of times. But closer inspection of the semantics of each loop

construct reveals the Repeat- Until executes the program statements at least once, where

the Do- While may not execute any of the statements. We therefore need to examine the

behavior (semantics) of the objects to get a detailed understanding of what exactly the

object does. This analogy applies to software architectures as well. Not only must we com-

pare the structures of the architectures, but we must compare the semantics (behavior) of

the components of the architectures as well.

"Semantics are commonly divided into two classes, static semantics and dynamic

semantics" (13). Static semantics require that all components exist and that all components

and operands are type-compatible. Dynamic semantics specify what a component does,

that is, what it computes. Axiomatic definitions may be used to model execution at a more

abstract level than operational models (an operational model explicitly describes a program

in terms of changes to a defined state). Furthermore, these definitions are based on formally
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specified relations or predicates that relate components. The axiomatic approach is good

for behavioral correctness because it avoids implementation details and concentrates on

how relations among variables are changed by a "program" execution (13). The axiomatic

approach of comparing a program's state space is presented in the next section, and it is

used to define the semantics of the architectural components of the different architectures.

4.2.2.1 State-Based Machines. The method chosen to compare the seman-

tics of the different architectural components is derived from state-based machines. The

choice of the state-based machine approach seems logical since the objects contained in

object diagrams encapsulate state information. By using state-based machines, the spe-

cific engineering details of the computer (memory size, speed, etc.) and software (looping

constructs, array implementations, etc.) are "abstracted out", allowing us to concentrate

on the semantics of the architectures independent of any hardware or software consider-

ations (4). By "abstracting out" the engineering data, we can more easily reason about

the architectures as well as the subsequent development of the semantics. Ultimately,

the semantics are based on formal mathematical concepts and logic, which show program

correctness. Before proceeding further, we provide a few definitions to help explain the

semantics of state-based machines.

An abstract machine may be represented as Machine S- (q, F) where:

"* q is the current state of Machine, and

"* F is a set of transformations effecting state changes. If Q is the state space of

Machine, then F : Q -- Q.

"* A state q of a Machine is given by all the data objects Oj within Machine
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The abstract machine implies the underlying state space may be defined by Q = Q, x

... x Q, where Q, is the set of legitimate states of object Oi in Machine. Thus, F may

represented as:

(Q1, Q2,... Qn() -'c(1 Q2 . .s Qn) where F transforms a state of Q into some

new state.

With the above background, the semantics of an architectural component from any

of the architectures can be defined axiomatically. The axioms consist of three elements:

a set of input assertions, a set of output assertions, and a programming construct P.

The programming construct P is used to represent F in the above transformations. If

the input assertions are true prior to the execution of the programming construct, and the

programming construct terminates, then the output assertions must be true. The input and

output assertions characterize the legitimate input and output states for a programming

construct. The set of input assertions are called preconditions, denoted 4, the set of output

assertions are called postconditions, denoted %, and the programming construct is denoted

P.

Preconditions define constraints on the input or data that a program is required to

handle. Such constraints are bounds on the size of the program state space, assumptions

about the input data, bounds on variables, and a description of the structure of the input

data. Postconditions characterize exactly what the program must achieve. Postcondi-

tions are usually the most important part of a program specification. They define the

range of a computation. There are three central roles that postconditions play in program

development:
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"* They provide a precise and formal statement of what a program or function should

accomplish. Postconditions describe what a mechanism does with out regard to

"how" (11:187).

"* They can assist with the constructive development of programs.

"* They can be used in the constructive proof of correctness for a program.

If a state machine has a start state qo and a set of final states {qy ,,} (we will have

an element of {qfnaj} if the machine terminates), then the overall effect of an abstract

machine may be defined as:

[- {qo}P{qfinI}

where P is an abstract program that transforms the the start state q0 to qnyal.

Using the conditions of -t and T to characterize the state space the semantics (or partial

correctness) of a program P may be described as:

H- {$}P{'4,}+

which is read as: "If the initial state q0 satisfies condition t and the program P terminates,

then the final state qfin,1 will satisfy the conditions given by T."

The state space of an abstract machine is defined as a tuple of information. As an

example, let Q = (QI X Q2 X Q3) where Q, through Q3 are sets of Natural numbers.

A program P can be subdivided into program segments P = PI,P2,... ,P,-IiPn. These

program segments are used to identify smaller transformations of the program, and specific

instances of Q = Q1 X ... X Qn can be used as intermediate assertions. Thus, we can

transform I- f{qo}P{qfinl} into:

qo{pl}ql; qi {P2 }q2 ; q2f{P•3}q3 ; ... ; qn{P,}q 1i,.i 4=* {qo}P{qin.0 } =
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where qo ... qinal are specific instances of Q, x ... x Q,.

To summarize the information above, the semantics of a set of architectural compo-

nents within a software architecture can be seen as a set of program transformations P

given an initial state satisfying the precondition $ resulting in a final state satisfying the

postconditions T.

4.3 Summary

In this chapter, a framework for comparing software architectures was presented. The

framework allows for comparison of both the structure of architectures and the semantics by

use of preconditions and postconditions. The next chapter presents the actual comparisons

of the five software architectures.
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V. Comparison and Analysis of Five Software Architectures

5.1 Introduction

This chapter presents the results of creating an object diagram for each software

architecture as well as defining the preconditions and postconditions for each architectural

entity of interest. The order of presentation of the architectures is the OCU model, MetaH,

VHDL, pRapide, and the IBM DSSA.

The purpose of defining a framework for comparing architectures is to allow for the

reuse of design and domain knowledge via transformation techniques. With the similarities

identified, architectural components from one model may be transformed into architectural

components of another model in a behavior preserving way without knowledge loss.

The semantics of the architectural entities of interest are presented using the nomen-

clature presented in Chapter 4, {$}P{'}+, where 4t is the precondition, P is an abstract

program and 1@ is the postcondition. The postcondition represents the logical variables that

may potentially change as a result of the execution of the abstract program P. Further, to

indicate a possible change in state of a logical variable, a Z-like (pronounced Zed) notation

is used. The Z notation is in the form of a tick (') or decoration after the component, such

as, attribute' (2).

5.2 OCU

The analysis of the OCU model is based on the information presented in (14) and

this research. This research is included in the analysis since this research subsumes the

addition of events and event processing to the OCU model.
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Primitive

Operation Input Attribute Output

Coefficient Attribute Constant

Figure 5.1 Object Model for a Primitive

5.2.1 OCU Syntax. The OCU model consists of primitives, subsystems and an

application executive. The lowest level of abstraction is the primitive. A primitive has

inputs, outputs, operations, and attributes. The inputs and outputs allow information to

enter and exit the primitive. The attributes hold the local state information of a primitive.

Finally, the execution of the operations allow the primitive to change state. Figure 5.1

shows an object diagram of a primitive.

The next level of abstraction in the OCU model is the subsystem. A subsystem is

composed of imports and exports, inevents and outevents, a controller, as well as sub-

ordinate primitives and subsystems. The subsystem manages its subordinate objects, its

inevent and outevent areas, and the imports and exports of its subordinate objects. The

management of subordinate objects is done via the controller, which has either an update

algorithm or an event manager, both of which update the state of tl- subsystem by up-

dating the state of a subsystem's subordinate objects. The update algorithm contains a

sequence of object updates (as well as other operations) that must be performed in order for

the subsystem to achieve a new state. In contrast, the event manager processes inbound
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SSubsystemI

I Controller I I Primitive [ Import I F InEvent J

[-updt tow- updates Export J [OutEventJ

Figure 5.2 Object Model for a Subsystem

events and handles outbound events in order to achieve a new state for the subsystem.

Figure 5.2 is the object model for a subsystem.

Finally, the highest level of abstraction in the OCU model is the application executive.

The application executive is a collection of primitives and subsystems used to support

execution of the behavior of a composed application. Figure 5.3 is a composite object model

showing all the components of the OCU architecture together. There is no significance to

the shaded, dashed and solid type lines, they only serve to help differentiate the different

relationships in the object diagram.

5.2.2 OCU Semantics. Normally, we only analyze the behavior of objects that

exhibit noteworthy actions (22:112). Objects that exhibit interesting behavior within the

OCU model are the primitive and subsystem objects. These are the architectural entities

whose semantics are analyzed.

5.2.2.1 Primitive. A primitive's semantics can be seen in Figure 5.4. Note

that program P is composed of the Operations identified in the box. (D is represented as

the following:
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Figure 5.3 Complete OCU Object Model

Attribute, ... Attribute,

=* ( OutEventi ... OutEventy )
C oe f ficient i ... .Coe f ficientý
Constant l ... Constantý

( np-ti ... Inputj ) = > (Outputj ... Outputi )
Operation j ... Operationp

Figure 5.4 Diagram of an OCU Primitive Behavior
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(ValidInput(Input,) A ... A Validlnput(Inputi)) A {(Attribute,... , Attributej,
(Coe f ficientl,... , Coefficient..), (Constant,,..., Constant,)} E ValidStateSpace

"ValidInput" is a predicate that evaluates an Input and ensures that the input value

being passed to the Primitive is of a type the primitive can input and within bounds.

Additionally, "ValidStateSpace" is the cross product of all the legitimate state spaces that

a primitive can occupy based on its Attribute, Coefficient, and Constant values. The

precondition above requires that the Input values are of the correct type and range, and

the values of the Attributes, Coefficients and Constants together form a valid state space

for the primitive.

Two different postconditions are presented for the transformation process P on a

primitive. The first IF for a primitive represents the the transformation as a result of

applying the SetState and Update for the general OCU model.

1. If P represents a SetState operation then

(Attributeý = P(Attribute1 )) V (Coefficientý = P(Coefficienti))

2. If P represents an Update operation then

(Attribute',..., Attribute') = P((Attributel,... , Attribute,,), (Input,... , Inputj),
(Coefficient1,..., Coefficient,,), (Constant1 ,..., Constant,)) A

(Input'1 , .... ,InputS) = P((Attributel,... , Attribute,), (Input1,.. Inputj),
(Coefficientl,..., Coefficientm), (Constant,,..., Constant,,)) A

(Output, ... , OutputS) = P((Attribute l , ... , Attributen), (Input,,..., Inputj),
(Coef f icientl,... , Coefficient,), (Constant1 ,..., CConstant,,))

The i subscript in a postcondition uniquely identifies an Attribute or Coefficient that

is to change. The postcondition of a non-event-driven execution implies that as a result

of the transformation process of P (P representing a SetState operation), an Attribute
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or a Coefficient value has changed. Likewise, the postcondition (where P is an Update

operation) indicates that the Attribute, Input, and Output values have changed.

The second It represents the transformation of a primitive based on our implementa-

tion of the OCU model in Architect. Due to event-driven simulation, this transformation

differs from the one above.

1. If P represents a SetState operation then

(Attribute ..... ,Attribute' ) = P((Attributel, . . . , Attribute,,), (Input 1,..., Input, ),
(Coefficienti,..., Coefficientm), (Constanti,..., Constant,)) A

(OutEvent•., . . ,OutEvent') = P((Attributel,... , Attribute,), (Input1,..., Inputj),
(Coefficientl,..., Coefficient,,,), (Constanti,..., Constant,)) A

(Input' ,...., InputS) = P((Attributel,. . . , Attributen), (Input,,..., Inputj),
(Coe f ficientl,... , Coefficient,,), (Constanti,..., Constant,)) A

(OutputS,...., OutputS) = P( (Attributel, .. ., Attribute,,), (Input,,..., Inputj),

(Coef ficient1,... , Coefficienti), (Constanti,. .. , Constant,))

2. If P represents an Update operation then

(OutEvent,....., OutEvent') = P((Attributel,... , Attributen), (Inputl,... , Input,),
(Coef ficientl,... , Coefficient,), (Constanti, ... , Constant,))

The postcondition implies that as a result of the transformation process of P (P

representing a SetState operation), the Input, Attribute, OutEvent and Output values

change. Similarly, the postcondition of the transformation process (where P represents

an Update operation) is the generation of some OutEvents. Changing any of these values

dictates that a primitive has changed state.

5.2.2.2 Subsystem. The subsystem's semantics can be seen in

Figure 5.5. The state of an OCU Subsystem is a composition of all the state information
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UpdateAlgorithm
( lnEventl ... InEventt ) =>,= ( Out Event, ... Out Event, )

Primitivel ... Primitive.
( lnputi ... lnputj ) => = (Output, ... output. )

Subsysteml ... Subaystem,

Figure 5.5 Behavioral Model for an OCU Subsystem With Subsystems and Primitives

of its subordinates. As such, when a subordinate object to a subsystem changes state, the

subsystem itself has changed state. Note that program P represents either the sequential

execution of the UpdateAlgorithm or the execution of some operation of a subordinate

object based on an event received. ot can be represented as the following:

(Validlnput(Input,) A ... A Validlnput(Inputj)) A
(ValidEvent(InEventi) A ... A ValidEvent(InEventk)) A

{(Primitive,,... , Primitiveu), (Subsystemi,. . . , Subsystemp )} E ValidStateSpace

"ValidEvent" is a predicate that evaluates an InEvent to ensure the target - the

inbound event is this subsystem. Also, "ValidStateSpace" represents the cross product of

all the legitimate state spaces that a subsystem can occupy based oU the state space of its

subordinate Primitives and Subsystems. The precondition above requires that the Input

values are of the correct type and within bounds, the InEvents are for this subsystem, and

the state space of the subordinate Primitives and Subsystems together form a valid state

space for the subsystem.

In the non-event-driven transformation process for the general OCU model, P rep-

resents the sequential execution of the operations in the UpdateAlgorithm. %F is:

(Primitive.,... Primitive') = P((Primitivel, ... , Primitiveu), (Input,,..., Inputj),
(Subsystem 1,...., Subsystemp )) A

(Subsystem',..., Subsystem,) = P((Primitivel,... , Primitiveu), (Input1,..., Inputj),
(Subsystem 1,... , Subsystemp )) A
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(Input',. . . , Input',) = P((Primitivei,. . . , Primitiveu), (Input,... , Inputs),
(Subsystemr ,... , Subsystemp)) A

(Output ,...., Output') = P((Primitive, ... , Primitiveu),(Inputl,... ,Input,),

(Subsystem,,..., Subsystemp ))

The postcondition of a subsystem for a non-event-driven execution implies that the

subsystem as a whole has changed state, including subordinate Primitives and Subsystems.

The Input and Output values of the subsystem have also changed. The reason the Input

values can change as a result of the transformation process is due to the possibility of

feedback.

With the introductioa of events to the OCU model of Architect, a subsystem exhibits

a different behavior. After an event-driven transformation process of P, T is:

1. If P represents a SetState event for a subordinate object then

((Primitiveý = P(Primitivei)) V (Subsystem' = P(Subsystemi))) A

((OutEvent ,...., OutEvent') = P(Primitivei) V P(Subsystem,)) A

((Input',..., InputS) = P(Primitive1 ) V P(Subsystemi)) A

((Output , . . ., OutputS) = P(Primitive,) V P(Subsystem,))

2. If P represents an Update event for a subordinate object then

(OutEvent'1 , . . . , OutEvent') = P(Primitive,) V P(Subsystemn)

The i subscript in the postcondition uniquely identifies a particular Primitive or

Subsystem that is the target of the event. The postcondition for the transformation process

(where P is a SetState event) dictates that the uniquely identified subordinate Subsystem

or Primitive changes state, as well as some OutEvent, Output, and Input values. The

postcondition of the transformation process P for an Update event indicates that only the
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OutEvents of a subsystem change as a result of the event being processed by some uniquely

identified subordinate Subsystem or Primitive.

5.3 MetaH

5.3.1 MetaH Syntax. A MetaH architecture is specified using eight different

objects. The most primitive of these entities is a subgroup called source entities; they

are port types, subprograms, packages, and monitors. Source entities have links to soft-

ware source modules. The next higher-level abstraction is a process; a process entity is

a grouping of source entities. As processes are groupings of source entities, macros and

modes are higher-level groupings of processes. Likewise, processes, macros and modes can

be grouped to form a higher-level mode or macro abstraction. Finally, the highest-level

abstraction is an application. The application contains all the information needed to an-

alyze a design against real-time constraints, as well as actually generate code for a target

system. An application even contains a hardware description file for the target system,

which is used during actual code generation. In order to specialize source modules, MetaH

entities contain local attributes. Figures 5.6, 5.7, and 5.8 are object models for MetaH

source entities, MetaH higher-level objects and a composite MetaH model, respectively.

The shaded, dashed and solid type lines signify the different relationships in the object

model.

5.3.2 MetaH Semantics. Objects that exhibit interesting behavior within MetaH

are the source entity, process, macro, and mode objects. These are the architectural entities

whose semantics are analyzed.

5-9



Source Entity

H

Attribute

Source Module

Entr - Package
Inforatio Por Subprogram

- Monitor
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Attribtel ... Attribute.

Path, ... Path,

(Inputi ... Input,) = : (OOutput, ... Outpti )

SotrceEntityl ... SourceEntity_

Figure 5.10 Behavior for a MetaH Process

5.3.2.1 Source Entity. A source entity's semantics can be seen in Figure 5.9.

Note that program P represents any subset of SourceModules identified in the box. t can

be represented as the following:

(Validlnput(Input,) A ... A Validlnput(Input,)) A {(Attribute1, . . . , Attribute,)}
E ValidStateSpace

"ValidInput" for the MetaH model represents a predicate that evaluates an Input

and ensures that the input value being passed to the source entity is of a type the source

entity can input and within bounds. Also, "ValidStateSpace" represents the cross product

of all the legitimate state spaces that a source entity can occupy based on its Attribute

values. The precondition above requires that the Input values are of the correct type and

range, and the values of the Attributes form a valid state space for the source entity.

As a result of the transformation process of P, * will be the following:

(Input',,..., InputS) = P((Attributel,..., Attribute,), (Inputi,..., Input,)) A

(Output',...., OutputS) = P((Attributel,..., Attribute,), (Input1,..., Input3 )) A

(OutEvent', . . , OutEvent',) = P((Attributel. . . . , Attribute,,), (Input1,..., Inputs))

The postcondition indicates that as a result of the transformation process of P, the

Input, Attribute, OutEvent and ,jutput values change for a source entity. The changing

of the Input values are due to the possibility of feedback.
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5.3.2.2 Process. Process semantics can be seen in Figure 5.10. The state

of a MetaH process is a composite of its Attribute values and the state information of its

subordinate source entities. Note that program P represents the execution of some Path.

4D for a process can be represented as the following:

(Validlnput(Input,) A ... A Validlnput(Inputi)) A
(ValidEvent(InEventl ) A. .. AValidEvent(InEventk )) A { (Attribute,,... , Attribute,),
(SourceEntity,... , SourceEntitym), (Path,,..., Path,)} E ValidStateSpace

The"ValidEvent" is a predicate that evaluates an InEvent to ensure the target of the

inbound event is this Process. "ValidStateSpace" represents the cross product of all the

legitimate state spaces that a process can occupy based on its Attribute values, subordinate

SourceEntities, and Paths of execution. The precondition above requires that the Input

values are of the correct type and within bounds, the InEvents are for the Process, and

the values of the Attributes along with the state space of its SourceEntities as constrained

by Paths define a valid state space for a process.

As a result of the transformation process of P, T will be the following:

(SourceEntityi,. . . , SourceEntity') = P((Attributel,. . . , Attribute,),
(Input1 ,... , Inputj), (InEventl, . . . , InEventk),
(SourceEntityl,... , SourceEntity,,n)) A

(Attribute',..., Attribute') = P((Attributel,. . . , Attribute,), (Input,... , Inputj),
(InEventl,... , InEventk), (SourceEntityl,..., SourceEntitym)) A

(Input',... , InputS) = P((Attributel,... , Attribute,), (Input 1,... Inputj),
(InEventl,..., InEventk), (SourceEntityl,..., SourceEntityn)) A

(InEvent',. . . , InEvent') = P((Attribute,. . . , Attribute,), (Input,,..., Inputs),
(InEventl,..., InEventk), (SourceEntityl,..., SourceEntity,)) A

(Output ,...., OutputS) = P((Attributel,... , Attributen), (Input,,..., Inputj),
(InEventl,... , InEventk), (SourceEntityl,.. ., SourceEntity,,)) A

(OutEvent' .,... ,OutEvent',) = P((Attributel,. . . , Attribute,,), (Input,... , Inputj),
(InEventl,..., InEventk), (SourceEntityl,..., SourceEntitym))

5-14



Attributel ... Attribute.
( InEventl ... lnEventi ) =: Pathl ... Path, ( OutEvent, ... OutEJent. )

(Inputi ... Inputj) o . (Outputi ... Output,)
Macro1 ..•. Macr o,

Procesas... Process-

Figure 5.11 Behavior for a MetaH Macro

The postcondition states that as a result of the transformation process of P, the

Input, InEvent, Attribute, OutEvent and Output values have changed. Also the state of

the process' subordinate SourceEntities have changed state. Changing in the Input values

and InEvents are due to feedback.

5.3.2.3 Macro. The macro's semantics can be seen in Figure 5.11. As

with a process, a macro's state is a composite of its Attribute values and the state space

of its subordinate objects. Program P represents the execution of some Path. t can be

represented as the following:

(Validlnput(Input,) A ... A ValidInput(Inputi)) A

(ValidEvent(InEvent1 ) A... .AValidEvent(InEventk ) ) A{ (Attribute,,..., Attributen),
(Process1,..., Processm), (Macro1,..., Macro,,),
(Path, ... Pathz,)} E ValidStateSpace

"ValidStateSpace" for a macro is the cross product of all the legitimate state spaces

that a macro can occupy based on the values of its Attributes, the state space of its subor-

dinate Macros and Processes, as restricted by the execution Paths. The above precondition

dictates that the InEvents received are for the macro, the Inputs are of the correct type

and range, and the state space for a macro is defined by its Attribute values, Macros,

Processes, and execution Paths.

After the transformation process of P, T will be:
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Attribute1  Attribute.
Path1 ... Path,

(InEventl ... InEaentk ) * * (OutEvent, ... OutEvent,)

Model ... Mode.
(Inputl ... Inputi) =. Macro1 ... Macro, * (Output, ... Outputi)

Process, ... Proceas,,

Figure 5.12 Behavior for a MetaH Mode

(Process,. . . , Process') = P((Attributel,. . . , AUribute,), (Input,,..., Input,),
(InEventl,..., InEventk), (Processi,..., Processn), (Macro,,..., Macro.)) A

(Macro'1,... , Macrot) = P((Attributel ,... , Attribute,), (Input,... , Inputj),
(InEventx,..., InEventk), (Process,,..., Process.), (Macro1,..., Macro,)) A

(Attribute, ... , Attribute') = P((Attributel, . . . , Attributen) , (Input1,..., Inputj),
(InEventl,..., InEventt), (Processi,..., Processm), (Macroi,..., Macro_.)) A

(Input', . .., InputS) = P((Attributel,. . . , Attribute,), (Input,,..., Inputy),
(InEventx,..., InEventk), (Processi,..., Process.), (Macroi,..., Macro,)) A

(InEvent,.. . ,InEvent',) = P((Attribute,. . . , Attribute,), (Input,,..., Input,),
(InEventi,..., InEventk), (Processu,..., Processm),, (Macroi,..., Macro.)) A

(Output , ... , OutputS) = P((Attributel,. . . , Attributen), (Input,, . . ,Inputj),
(InEventl,..., InEventk), (Processi,..., Processm), (Macro,,..., Macro.)) A

(OutEvent',... , OutEvent',) = P((Attribute l ,..., Attribute,), (Input,,... , Inputi),
(InEventl,.. . , InEvent, ), (Process1,..., Process,,), (Macro, ,... , Macro.))

The postcondition of a macro implies that the macro as a whole has changed state,

including its subordinate Processes and Macros. Also changed as a result of the trans-

formation process P are the Attribute, Input and Output values, and the InEvents and

OutEvents of the macro. Feedback is the cause for the InEvents and Input values changing

as a result of the transformation process.

5.3.2.4 Mode. The mode's semantics can be seen in Figure 5.12. As with

a macro, a mode's state is a composite of its Attribute values and the state space of its

subordinate objects. Note that program P in mode must represent the execution of some

Path from the figure. $ can be represented as the following list:
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(Validlnput(Input,) A ... A Validlnput(Inputi)) A
(VdlidEvent(InEvent )A.. .^AValidEvent(IInEvent1 ) )A{ (Attribute,,... , Attribute,),
(Process1,..., Process,,), (Macrol,. .. , Macro.), (Model, ... , Modeu,),
(Path,,..., Path,)} E ValidStateSpace

"ValidStateSpace" for a mode is the cross product of all the legitimate state spaces

that a mode can occupy based on the values of its Attributes, the state space of its subor-

dinate objects, as restricted by the execution Paths. The above precondition requires that

the InEvents received are for the mode, the Inputs are of the correct type and range, and

the state space for a mode is defined by its Attribute values, Modes, Macros, Processes,

and Paths.

After the transformation process of P, T will be:

(Process , .... ,Process') = P((Attributel,. . . , Attribute,), (Input,... , Inputj),
(InEventl,.. ., InEventk), (Processi,..., Process,), (Macro,... , Macro,),
(Model,..., Mode•)) A

(Macro,...... Macro') = P((Attributel,. . . , Attribute,), (Input,... , Inputj),
(InEventl, .. ., InEvent/,), (Process1,... , Process.), (Macro,,..., Macro.),
(Model,..., Mode.)) A

(Mode, .... , Macro') = P((Attributel,. .. , Attribute,), (Inputx,... ,Input ),

(InEventl,.. ., InEventk), (Processl,.... ,Process.), (Macroi,..., Macro3 ),
(Model,..., Mode,)) A

(Attribute'1,..., Attribute') = P((Attribute1,... , Attribute,,), (Input,. . . , Inputs),
(InEventl,.. ., InEventk), (Process,,.. . , Processm), (Macro,,... , Macro.),
(Model,.. ., Mode,,)) A

(Input',. . . , Input') = P((Attributel,. . . , Attribute,), (Input,,..., Inputj),
(InEventl,. . ., InEventk), (Process1 ,..., Process,), (Macro,,..., Macro.),
(Model,..., Mode.)) A

(InEvent'.,.... InEvent', ) = P((Attributel,..., Attribute,), (Input,,..., Inputs),
(InEvent, . . ., InEventk), (Process1,.... , Process,,), (Macro1,.. . ,Macro,),
(Model,..., Modew)) A

(Output', ... , Outputf) = P((Attributel,. . . , Attribute,), (Input1 ,..., Input,),
(InEvent, . . ., InEventk), (Processi,..., Processm), (Macro1,..., Macro,),
(Model,..., ModeJ)) A
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(OutEvent'• . ..... OutEvent'.) = P( (Attributel,. . ., Attributen), (Input,,. .. Input j),

(InEvent,. . . , InEventk), (Process,,..., Process,,), (Macroi,.. ., Macro.),
(Model,..., Mode,,))

The postcondition of a mode indicates that the mode as a whole has changed state,

including its subordinate Processes, Macros and Modes. Also changed as a result of the

transformation process P are the Attribute, Input and Output values, and the InEvents and

OutEvents of the mode. Input values and InEvents change as a result of the transformation

process due to the possibility of feedback.

5.4 VHDL

5.4.1 VHDL Syntax. The object diagram for VHDL is shown in Figure 5.13.

Since the object model for VHDL is relatively simple, we chose not to present portions of

it at a time but in its entirety.

All items to be modelled in VHDL are classified as processes. A process can be

further divided into entities or components. An entity is a stand-alone executable process

within the VHDL environment. An entity is a complete application whose behavior can

be modelled; it is not an architectural fragment of some larger construct. On the other

hand, components can not stand alone or be executed by themselves; components are

architectural fragments that are used in the development of larger constructs. We present

some examples to emphasize the difference between VHDL entities and components:

"* An and gate can be a entity where its behavior is simulated and modelled.

"* A J-K flipflop can be an entity.
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Figure 5.13 VHDL Object Model
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Attributei . .. Attribute.
(lnSignall . .. lnSignall,) :,: (OutSignall OutStgnaly)

Operation

Figure 5.14 Behavior of a VHDL Component

"* Nand and nor gates are considered compoLents when composed together in the design

of a J-K flipflop. The overall J-K flipflop circuit would still be considered an entity.

"* If the J-K flipflop above is used in the development of an even larger application,

it would then be a considered a component, and the larger application would be

considered an entity.

The important difference between an entity and a component is level of abstraction. An

entity is an application, while its identifiable subparts are components.

Information enters and exits a process via ports in VHDL. A port can have one of

four modes: in, out, inout, and buffer. Processes share information by sending signals

between processes. Signals are used to coordinate communication among all processes.

Port connections are directional; that is, the information flows from one port to another

in the direction specified by the port's mode (in, out, inout). Buffer, however is a special

case of inout.

5.4.2 VHDL Semantics. Objects that exhibit interesting behavior within VHDL

are the entity and component objects. These are the architectural entities whose semantics

are analyzed.

5.4.2.1 Component. A component's semantics can be seen in Figure 5.14.

Program P is the Operation identified in the box. t can be represented as the following:
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Attribute, •.. Attribute.

Component 1 ... Component.

(InSignall .1 . InSignalk) * (OutSig. ... O•tSiguali)

Operation

Figure 5.15 Behavior of a VHDL Entity

(ValidInput(InSignall) A ... A ValidInput(InSignalk)) A
{Attributel,... , Attributen } E ValidStateSpace

"ValidInput" for a VHDL component is a predicate that evaluates an InSignal to

ensure that tll ý InSignal is for this component to process. Also, "ValidStateSpace" is the

cross product of all the legitimate state spaces that a component can occupy based on its

Attributes. The precondition dictates that the InSignals are for this component and the

values of its Attributes form a valid state space for the component.

As a result of the transformation process of P, T is the following:

(Attribute', ... , Attribute') = P((Attributel,.. . ,Attribute,),
(InSignall,. . . , InSignalh)) A

(InSignal, ... , InSignal'k) = P((Attributel,. . . , Attributen),
(InSignall,. . . , InSignalk)) A

(OutSignal', .... ,OutSignal',) = P((Attributej,. .. ,Attributen),
( InSignall, . . ., InSignalk) )

The postconditions imply that as a result of performing a transformation, the At-

tribute values, InSignals, and the OutSignals of a component have changed. Changes in

the InSignals during this transformation are caused by the possibility of feedback.

5.4.2.2 Entity. The entity's semantics can be seen in Figure 5.15. Note that

program P represents a distinct Operation (if the entity is not composed of subordinate

Components) or the transformation of any of the entity's subordinate Components. 1 can

be represented as the following:
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(Validlnput(InSignall) A... A Validlnput(InSignalk)) A
{(Attributel,. .. , Attribute,), (Componenti, .. , Gomponent,, ) } E ValidStateSpace

The "ValidStateSpace" represents the cross product of all the legitimate state spaces

that an entity can occupy based on its Attribute values and the state space of subordinate

Components. The precondition above dictates that the InSignals are for this entity, and

the state space defined by the Attributes and Components forms a valid state space for

the entity.

After the transformation process of P, T is:

(Attribute',. . . , Attribute') = P((Attribute,... , Attribute,,),
(InSignall,..., InSignatk), (Componenti,..., Componentlm)) A

(Component',..., Component') = P((Attributel,. . . , Attribute,),
(Inignall,..., InSignalk), (Componenti,..., Componentm)) A

(InSignal',.. . , InSignal'k) = P((Attribute,.. ., Attributen),
(InSignal, . . . , InSignalk), (Component,,... , Componentm)) A

(OutSignal, ... , OutSignal',) = P((Attribute 1,... , Attributen),
(InSignall, . . . , InSignal k) , (Component,, . . . , Componentm))

The postconditions imply that as a result of performing a transformation P, the

Attribute values, subordinate Components, InSignals, and the OutSignals of an Entity

have changed. The changing of the InSignals results from feedback.

5.5 jiRapide

5.5.1 piRapide Syntax. There are four main features in /Rapide: event patterns,

components (and their corresponding interface), architectures, and mappings. Event pat-

terns are used by other constructs to allow access to behavior, constraints, and mappings.

An interface to a component defines how objects react to events, how objects change state,

and how objects generate new events. Components can model a small object like a circuit
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gate or a large object like an airplane. Architectures on the other hand define the flow of

events among components (objects). In other words, architectures define how components

communicate by means of events. Finally, the similarity of one architecture to another is

defined by a mapping; alternatively, mappings define how architectures are related. Fig-

ures 5.16 and 5.17 axe object models for the component and the architecture, respectively.

Figure 5.18 is a composite of all the architectural components of pRapide. As before, the

dashed and solid lines in Figure 5.18 aid in discerning the different relationships in the

object model.

5.5.2 pRapide Semantics. Objects that exhibit interesting behavior within

pRapide are the component and architecture objects. These are the architectural items

whose semantics are analyzed.

5.5.2.1 Component. A component's semantics can be seen in Figure 5.19.

Note that program P represents the execution of a Method identified in the box. 4' can

be represented as the following:

(ValidEvent(InEventi) A ... A ValidEvent(InEventk)) A
{ (Attributei,..., Attributen), (Constraint1 ,..., Constraintm) } E ValidStateSpace

"ValidEvent" is a predicate that ensures that an InEvent is for this particular com-

ponent. Also, "ValidStateSpace" is the cross product of all the legitimate state spaces that

a component can occupy based on the values of its Attributes, as restricted by the Con-

straints. The above precondition implies that the InEvents received are for the component

and the state space for a component is defined by its Attribute values and Constraints.

As a result of the transformation process of P, JI is the following:
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Figure 5.17 p.Rapide Architecture Object Model
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Attribute, ... Attribute.

Constraintl ... Constraint,

(InEventi ... InEventk) * * (OutEventi ... OutEvent,)
Componenti ... Component.

Figure 5.20 Behavior for a IRapide Architecture

(Attribute',.. ., Attribute') = P((Attributel,. . . , Attributen),
(InEventl,..., InEvent,), (Constraint,,..., Constraintn)) A

(InEvent',... , InEvent') = P((Attributel,. . . ,Attributen),
(InEventi,... , InEventk), (Constraint 1,..., Constraint,)) A

(OutEvent, ... , OutEvent') = P((Attributel,. . . , Attributen),
( InEventl ,. . ., InEvenik ), (Constraint,,..., Constr aint,,J))

The postconditions imply that as a result of performing a transformation, the com-

ponent may have changed state. The changes as a result of P are the Attribute values,

the InEvents, and the OutEvents of a component.

5.5.2.2 Architecture. The architecture's semantics can be seen in Fig-

ure 5.20. Since an architecture is a higher-level abstraction built from lower level abstrac-

tions, its state space is defined by its local Attributes and Components. It should be noted

that program P represents some subset of Methods of the subordinate components. ( can

be represented as the following:

(ValidEvent(InEventi) A ... A ValidEvent(InEventk)) A { (Attribute1,..., Attribute,,),

(Component 1,..., Componentm) ,
(Constraint,,... , Constraintm)} E ValidStateSpace

"ValidStateSpace" for an architecture is the cross product of all the legitimate state

spaces that a architecture can occupy based on the values of its Attributes and its sub-

ordinate Components, as restricted by the Constraints. The above precondition requires

5-26



that the InEvents received are for the architecture and the state space for an architecture

is defined by its Attribute values, Components, and Constraints.

After the transformation process of P, T is:

(Attribute', . . , Attribute') = P((Attributei, . . . , Attribute,,),
(InEventl,... , InEventk), (Constraint1,..., Constraint,,)) A

(Component',..., Component') = P((Attributel,.. . , Attribute,),
(InEventl,..., InEventk), (Constraint1 ,..., Constraintm)) A

(InEvent'1 ,. . . ,InEvent') = P((Attributel,. . . ,Attribute,),
(InEventl,..., InEventk), (Constraint1,..., Constraintm)) A

(OutEvent, ... , OutEvent') = P((Attributel,. . . , Attribute,),
(InEventi,... , InEventk), (Constraint,,. . . , Constraint,,))

The postconditions imply that as a result of performing a transformation, the archi-

tecture may have changed state. The changes as a result of P are the Attribute values,

the subordinate Components, the InEvents, and the OutEvents of a Component.

5.6 IBM DSSA Using Batory's Layered Approach

5.6.1 Batory's Layered Approach Syntax. The object diagram for Batory's Lay-

ered Approach is shown in Figure 5.21.

The fundamental unit of software construction according to Batory is the component.

Each component has an interface and an implementation. As part of Batory's architec-

tural model, every component defined must belong to a realm. A realm contains a set of

components with the same interface, but different implementations. In other words, every

component within a realm inputs the same type of information, outputs the same type of

information, but possibly performs a different transformation. A group of realms are used
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Figure 5.21 IBM DSSA Software Architectural Object Model
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to define a composition, where a composition is a set of guidelines by which components

are glued together to carry out a mission.

Components input information of a particular type from lower-level components and

transform it to a type the next higher-level can use. A component can be symmetric or

non-symmetric. Symmetric components have input parameters and their parameter input

type is the same as their parameter output type. Having symmetric components within

a software system allows for arbitrary stacking of components. On the other hand, non-

symmetric components have input parameters, but their input parameter type and output

parameter type do not match.

There are three ways of conceptually understanding components;

1. A component can be thought of as a layer, where a software system is a stacking of

different layers (a composition of components).

2. A component can be thought of as a function that is invoked to provide some service.

A software system is nothing more than a sequence of function calls, with the output

of one function providing the input to the next function.

3. "The best analogy for realms and components is the concept of a grammar.
A component corresponds to a production. Parameterized components
are productions whose right-hand side reference nonterminals; parameter-
less components are productions that only reference terminals. Symmetric
components correspond to recursive productions". (6)

5.6.2 Batory's Layered Approach Semantics. Objects that exhibit interesting be-

havior within Batory's Layered Approach are the components and software system (com-

position) objects. These are the architectural items whose semantics are analyzed.

5-29



Attribute, ... Attribute,
(Input, ... Input.,) = _ OutParameter,

Transform

Figure 5.22 Behavior of a IBM DSSA Parameterless Component

5.6.2.1 Parameterless Component. A parameterless component's semantics

can be seen in Figure 5.22. It should be noted that program P is the Transform identified

in the box. 4 can be represented as the following list:

(ValidInput(Input,) A ... A Validlnput(Inputj)) A
{Attribute 1,..., Attributen} E ValidStateSpace

"ValidInput" is a predicate that evaluates an Input and ensures that the input value

being passed to the component is of a type the component can input and within bounds.

Additionally, "ValidStateSpace" represents the cross product of all the legitimate state

spaces that a component can occupy based on its Attribute values. The precondition

above dictates that the Input values are of the correct type and range, and the values of

its Attributes form a valid state space for the component.

As a result of the transformation process of P, * will be the following:

(Attribute' ,..., Attribute') = P((Attribute,. . . , Attribute,,), (Input,... , Inputj))
A

OutParameter! = P((Attributel,... , Attribute,), (Input,. . . , Inputj))

The postcondition of a component indicates that the component as a whole has

changed state due to its change of Attribute values. Also changed as a result of the

transformation process P is the OutParameter.
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Attribute, ... Attribute,,
InParameter1 ... InParameterk • OuttParameter,

Transform

Figure 5.23 Behavior of a IBM DSSA Parameterized Component

5.6.2.2 Parameterized Component. The parameterized component's se-

mantics can be seen in Figure 5.23. It should be noted that program P is the Transform

identified in the box. $ can be represented as the following:

(ValidParameter(InParameterj) A ... A ValidParameter(InParameterk)) A
{Attributel,. . . , Attributen4 E ValidStateSpace

"ValidParameter" is a predkicte that evaluates an InParameter and ensures that the

InParameter is of a type the component can input. As with the parameterless component,

"ValidStateSpace" represents the cross product of all the legitimate state spaces that a

component can occupy based on its Attribute values. The precondition above requires

that the InParameters are of the correct type, and the values of the Attributes form a

valid state space for the component.

As a result of the transformation process of P, IF will be the following:

(Attribute',.. . , Attribute') = P((Attribute,. . . , Attribute,,),
(InParameterj,..., InParameterk)) A

OutParameter! = P((Attribute,, .. ., Attribute,,),
(InParameterl,... , InParameterk ))

The postcondition of a component states that the component as a whole has changed

state due to changes in the Attribute values. Also changed as a result of the transformation

process P is the OutParameter.
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(Input, ... Inuput,) =I Component 1 .. Component,,, (Outputi ... Output,)

Figure 5.24 Behavior of a IBM DSSA Software System

5.6.2.3 Software System. The software system's semantics can be seen in

Figure 5.24. It should be noted that program P represents to transformation of any of its

subordinate Components in the box. D can be represented as the following:

(Validlnput(Input,) A ... A Validlnput(Inputj))A
{Component,,. . ., Component,} E ValidStateSpace

"ValidInput" is a predicate that evaluates an Input and ensures that the Input is of

a type and range the software s..'stem can input. "ValidStateSpace" represents the cross

product of all the legitimate state spaces that the software system can obtain based on

the state spaces of its subordinate Components. The precondition above dictates that the

input Values are of the correct type and range, and the state space of its Components form

a valid state space for the software system.

As a result of the transformation process of P, IQ will be the following:

(Component , .... ,Component') = P ((Component,... , Componentm),
(Inputi,..., Inputj)) A

(Output•,,.. ., Output') = P ((Component,,.. . , Component,),
(Input,,. . ., Input ) )

The postcondition of a software system requires that the software system as a has

changed state due to state changes of its Components. Also changed as a result of the

transformation process P is the Output values.
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5.7 Analysis of Software Architectures

Each section of this chapter analyzed a different software architecture using an object

diagram and the axiomatic approach. The object diagrams allow the comparison of the

structures of the software architectures while the axiomatic approach allows the comparison

of semantics derived from the state space of the objects, as constrained by preconditions

and postconditions.

5.7.1 Structural Analysis. Table 5.1 is a romposite of the structural components

of the software architectures that can be identified from the object diagrams and the

documentation. Characteristics of the architectures are listed on the left, while the different

architectures are listed across the top of the table.

As mentioned, the object diagram has been tailored for the purposes of this thesis

effort. As such, some of the information presented in Table 5.1 has been reintroduced from

the literature.

The following can be drawn from analyzing the object diagrams of the software

architectures:

1. All architectural components have some way to retain their state information. In

the lowest-level constructs, the state information is retained in attributes; in higher-

level constructs, state information is captured in the subordinate objects, as well as

attributes.
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Table 5.1 Structural Commonalities of the Software Architectures

IOCU [ MetaH I.VHDL Rapide IBM DSS
Validation Application Application Test Rapide- 1 Rapid
Environment Executive Bench Prototype
Events Yes Yes Yes Yes Yes'
Event Yes Yes Yes Yes Yes'
Management
Event Yes Yes Yes YesJ

Buffers
Lowest Primitive Source Entity Entity/ Component Parameterless
Abstraction Component Component
Higher Subsystem Process, Entity Component Parameterized
Abstractions Macro, Component,

Mode Configuration,
Software System

Attributes
At Lowest Yes Yes Yes Yes Yes
Level
Attributes
At Higher Yes Yes Yes Yes
Level
Ways to Update Source Operations Methods Transforms
Change A•gorithm, Modules,
State Optrations Paths
Data Ports Yes Yes Yes Yes'
State Implicit Implicit Implicit Implicit Implicit

1 Mentions, but give- no details.
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2. All components of the different architectures have a way to change state; none are

static. Some architectures use operations to change state, some use an update algo-

rithm or an execution path, while others employ a transform.

3. All of the architectures incorporate events and event processing.

4. All constructs have a way to interface with their environment. Some components get

their information from inputs, while others get their information from events.

5. All the software architectures analyzed employ a layered architecture. The layered

architecture results in different levels of abstractions, with the higher-level abstrac-

tions requesting services from lower-level abstractions.

5.7.2 Semantics Analysis. Tables 5.2 and 5.3 are composites of the semantics for

the most primitive objects (of interest) and the higher-level objects of interest within the

architectures, respectively. By looking at each of the two categories of object types (most

primitive and those "built on" the primitive types), we can see that there are differences

within each category. As an example, all the primitive type objects change the state of

their associating attributes except MetaH; a MetaH Source Entity does not change any of

its local attributes. The same is true about the higher-level objects of the architectures;

all change the state of their local attributes (if present) except MetaH.

The following are some general conclusions that may be drawn from the seman-

tics (preconditions and postconditions) of the architectural components regardless, of the

specific software architecture:
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Table 5.2 Primitive Objects and Their Semantics

OCU MetaH VHDL pRapide IBMDSS
Objects That
Chajmse State
itself Yes Yes Yes Yes Yes

Attributes Yes Yes Yes Yes
Output Yes Yes Yes
Out Events Yes Yes Yes Yes Yes'
Input Yes Yes
In Events Yes Yes Yes'

1 Mentions, but gives no details.

Table 5.3 Higher Level Abstractions and Their Semantics

I__JCU MetaH VHDL /Rapide T1BM DSA
Objects That

Change State

Itself Yes Yes Yes Yes Yes
Local
Attributes Yes Yes Yes
Subordinate
Objects Yes Yes Yes Yes
Output Yes Yes Yes
Out Events Yes Yes Yes Yes Yes'
Input Yes Yes
In Events Yes Yes Yes Yesi

Mentions, but gives no details.
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1. The lowest-level constructs modify only their local attributes and may cause some

type of outputs as a side effect of the transformation process.

2. The primitive constructs for the most part are passive; they initiate no actions on

their own but service the requests of higher-level constructs.

3. The higher-level constructs not only change the state of their local attributes (if

present) and possibly cause outputs, but may also force the change of state of their

subordinate objects.

4. The higher-level construct's state is a composite of its local state and the state of its

subordinates.

5. An object at a particular level is only able to modify the state of objects subordinate

to it; it is not able to cause state changes to other objects at the same level or above

in the architecture.

5.8 Conclusions From Analysis

As mentioned in Section 5.7.1, all of the architectures incorporate the layered ap-

proach in their design. An advantage of employing the layered approach is that it allows

the developer of a system to abstract a component to the desired level. The developer can

model an object at the lowest level or model the object as several subcomponents interact-

ing to complete a task as a whole. An example of designing different levels of abstractions

for the same object can be seen in VHDL and OCU: a flip-flop circuit can be modelled as

a single object or may be built from lower-level objects such as nor gates or nand gates.
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A common feature of all of these architectural models is the encapsulation of both

the local state and information. This is accomplished via the layered approach and the se-

mantics of the architectural model. The layered approach allows for the localization of the

information, while the semantics of each model localizes the span of control. The localiza-

tion is evident in the semantics of the architectural components of each architecture; each

component changes its local state and may only change the state of objects subordinate

to it.

There is no one-to-one mapping of components between software architectures. Al-

though the components of two architectures may appear structurally and semantically

similar, they cannot be directly substituted for each other; an example is an OCU prim-

itive and a MetaH source entity. Both have ports to receive data from and send data

through, both have attributes, and both are almost semantically identical. However, the

substitution of a MetaH source entity for a primitive in the OCU structure would fail. The

failure can be attributed to how each of these components change state; an OCU primitive

changes state by executing one of its operations, where a MetaH source entity changes

state by executing one of its source modules.

Another point that can be drawn from the analysis of these software architectural

models is that the domain knowledge of the application area is captured in the most

primitive objects of the architectures. The higher-level abstractions within an architecture

have less domain knowledge of the application area; the information they do contain tends

to identify their span of control, which subordinate objects are connected together, what

resources are shared, and how they are to accomplish their mission.
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By stepping back and looking over the information presented in Tables 5.1, 5.2, and

5.3, the architectures, their components, and their component's semantics all appear sim-

ilar. From a structural standpoint, all the architectural components have ports or buffers

to receive information, attributes to store information, lowest-level primitive abstractions,

and a way to change state. From a semantic view, all the architectural components be-

have the same; they consume input or in events, they change state, and they produce new

output or out events. One may conclude that there possibly exists a meta-structt.ý.e (or

meta-model) for software architectures.

Although the software architecture of all the architectural models studied in this

thesis employ the layered approach, there are some conclusions that can be drawn from

this effort that point to some necessary characteristics for all software architectures.

1. In order to localize the effects that changes have on a system and facilitate reuse

within any architecture, the encapsulation of information (information hiding) and

the limiting of the span of control of an architectural entity are good criteria for

a software architecture. Employing these two concepts alone minimizes the effects

of any changes on a system whether the system is being enhanced (adding new

capabilities to a system) or maintained.

2. By limiting the span of control and encapsulation of the architectural entities, the

preconditions and postconditions of the state space are limited as well. This restrict-

ing of the preconditions and postconditions of a construct makes it easier to replace

an entity within one architecture with an entity from a different architecture that

conceptually performs the same function but in a different way. This leads to the
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possibility of reusing design and domain knowledge from other projects with different

architectures.

Just as the characteristics presented above (limitation of the span of control and

the encapsulation of information) are deemed good in an architecture, the lack of these

characteristics may be deemed as bad. However, at present there does not exist a standard

method to evaluate an architecture. Other areas of the software discipline have developed

metrics to assess the code complexity (McCabe's Metrics), algorithms efficiency (0 and a),

and test coverage (graph theory). It can be concluded that metrics for evaluating software

architectures should be developed.

Finally, with a software architecture meta-model and a metric for evaluating software

architectures, the capability exists to map a component of one architecture into the state

space of another architecture. The metrics can be used to evaluate a software architecture

from which an entity is to be drawn. The results of applying the metric can reveal the

ease of removing the architectural component while allowing its behavior to remain intact.

Likewise, the meta-model can be used to identify the components of the entity. After

retrieving the entity, it can be mapped into the state space of the target architecture based

on the preconditions and postconditions of the entity. The entity can be transformed

without the loss of any knowledge by using a state-space transformation process as defined

by (11). After the transformation process, the new entity is integrated into the target

architecture.
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VI. Detailed Design of Architect's Event-Driven Simulation Capability

6.1 Introduction

As presented in the operational concept (Section 3.4), events in Architect are passed

to an independent subsystem by the executive. Each subordinate subsystem in the in-

dependent subsystem's structure interrogates the event after the event, is received. The

interrogation results in the event either being processed by the subsystem or being routed

to another subordinate subsystem. The following sections describe the implementation of

events within Architect and the subsequent modifications required to Architect's behav-

ioral modeling capabilities. Additionally, these sections describe the information that is

encapsulated in the events, purposes of the information within an event, and changes made

to the subsystems to process and manage events.

6.1.1 Processing of Events. Before the structure of the events could be defined,

event processing for Architect needed to be specified. For example, questions like would

subsystems act as event managers with the primitives processing the events, or should the

subsystems both process and manage events for its subordinate primitives? Keeping with

the OCU model as defined by the SEI, subsystems are the "locus of the mission", while

primitives are the "services to carry out the mission" (14:18). Since the subsystems are

the locus of the mission, I opted to incorporate event processing into the controller of the

subsystem. After the controller interprets an event, it invokes the appropriate subordinate

object to carry out the service required. Resolving this issue allowed the identification of

the target for an event (a primitive of a subsystem) and a routing scheme to the target.
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6.1.2 Structure of Events. As mentioned in Chapter 3, there are two classes of

events incorporated within the Architect system, application events and executive events.

The following information was identified as being needed by all event types: the priority

of the event, the event time, the target of the event and the path to the target (routing

scheme) through the subsystem structures. Figure 6.1 shows the information common to

all events. The ellipses imply that an event may contain additional information.

Event

Event Routing Event Event
Time Scheme Priority Target

Figure 6.1 Common Information for All Events

Further, we needed to identify any requirements for domain-specific information that

needed to be incorporated into any of the events. The only event identified needing domain-

specific information was the SetState event. The SetState event contains the attribute

names and values that need to be changed for a particular primitive at a future time.

With no other information requirements for events, the application events were defined as:

1. Update event - received and interpreted by a subsystem. The target is a primitive of

the subsystem that receives this event. The receiving subsystem invokes the Update

function of the appropriate primitive.

2. SetState event - interpreted by a subsystem and used to invoke the SetState function

of the appropriate primitive.
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3. NewData event - received and interpreted only by the superior subsystem in an

independent subsystem. The superior subsystem schedules Update events based on

changes to any data in its import area. This event is discussed further in Section

6.1.5.2.

Figure 6.2 shows the events listed above and the information contained in each. The

underlines emphasize differences between the NewData and Update event

Update Event

Event Time Routing Scheme Event Priority Event Target

data type: data type: data type: dattX
Integer (subsystem) Integer Pimitive

New Data Event

Event Time Routing Scheme Event Priority Event Target

data type: data type: data type: data Lvn=.
Integer (subsystem) Integer Subsstem

Set State Event

Event Time Routing Scheme Event Priority Event Target Attribute values

data type: data type: data type: data type: data type:
Integer (subsystem) Integer Primitive (Name-Value)

Figure 6.2 Application Events With Data Types

6.1.3 Event Driven Simulation Within Architect. The operational concept for

events presented in Chapter III has the application executive passing events to subsystems.

This is considerably different from the sequential flow of control that was originally designed

in (3, 20). Subsystems now have to interpret and manage events in the event-driven

simulation instead of performing a set of operations defined in an update algorithm. The
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flow of control for the event-driven mode is still sequential in nature; however, events are

produced, consumed, routed, received and managed.

6.1.3.1 InEvent and OutEvent Areas. Data flow within the OCU model is

managed through import and export areas. Since the SEI makes no refe--nce to events

or event processing within the OCU model, a means to pass events was required. Some

of the architectures examined under this thesis separated event flow from data flow (25).

Furthermore, in keeping with the OCU concept of arbitrary compositions of subsystems and

primitives to form meaningful object abstractions, a decision was made not to incorporate

events into the import and export areas. Event passing is implemented in much the same

way that data passing is implemented in the OCU model. Events flow into a subsystem via

an InEvent area and exit the subsystem via an OutEvent area. These additional constructs

enhanced the state information of a subsystem by allowing the events of a subsystem to be

persistent. Since event information is ultimately managed by the application executive's

event manager (that is, a subsystem does not manipulate an event unless the target of

the event is itself or a subordinate primitive), the InEvent and OutEvent areas are sets

of events with no restrictions on the number or ordering of events within these areas.

Under this effort, the InEvent area is implemented as a sequence of events; however, since

there is just a single thread of control within an independent subsystem, the InEvent area

will only contain one event. With the implementation of a truly concurrent simulation

mode, more than one event may be present in the InEvent area. However, that is left for

future research. An example of a subsystem with InEvent and OutEvent areas is shown

in Figure 6.3.
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Figure 6.3 Subsystem With InEvent and OutEvent Areas

6.1.3.2 Flow of Events Through Subsystems. Section 6.1.1 indicated that

the target of an event is usually a primitive object. The parent subsystem of the target

primitive actually "decodes" the event and invokes the appropriate primitive's function

as defined by the event type. The routing scheme of the event contains a sequence of

subsystems that are superior to the primitive. Figure 6.4 shows a subsystem structure and

a sample event targeted for a subordinate primitive; emphasized are the target and routing

scheme fields of the event. The routing scheme within an event can be thought of as a

directory to the primitive. Since the overall structure of the OCU model is hierarchical

and the subsystems are only aware of subordinate objects directly beneath it, a subsystem

must be able to query the event as to whether it needs to process or route the event. This

querying is accomplished by the subsystem removing its name from the routing scheme. If

there are any subsystems remaining in the routing scheme, then a subsystem routes this

event to a subordinate subsystem, as specified by the next name in the routing scheme.
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However, if the routing scheme is empty, the subsystem consumes the event and invokes

one of its primitive's operations.

! lVet ZlVent Ro-til I•,nt [
fine Priority SIchem Tarlet

--------------------

{Subsyaten 1, Subsystem 2) Lrimt -=Ie,

Figure 6.4 Sample Subsystem with Associated Event Targeted For Primitive

6.1.3.8 Changes to Execution Functions of Architect. This processing and

managing of events forced Architect to have two EXECUTE functions. One EXECUTE

function is the original simulation capability as implemented by (3, 20). The new EXE-

CUTE function had to know of the InEvent and OutEvent areas of subsystems and the

structure of the events. Additionally, the controller of a subsystem is no longer concerned
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with an Update Algorithm as the events received dictates the actions of the subsystem.

The new execute function had to be capable of passing events down to subsystems and

receiving events from lower level subsystems and primitives. This required a rewrite of the

following Architect functions:

1. Execute-Subsystem - This function checks the subsystem's execution mode and either

invokes the sequential mode as implemented by (3, 20) or invokes the Event-Driven-

Controller.

2. Set-Export - This function checks the execution mode and either operates as it did

under the sequential mode or returns a set of events.

3. Update - This function invokes the primitive objects update algorithm as it did under

the sequential mode, but as a result of an event-driven execution, it returns a SetState

event. This is determined by the domain implemented 'y the domain engineer.

4. SetState - Again, depending on the mode, this function works as it always did or

returns a set of events.

Not only did some of Architect's original functions need to be rewritten, but some new

functions had to be added to generate events:

1. Event-Driven-Controller - queries events of a subsystem to determine if this subsys-

tem should process the event or route it to a subordinate subsystem.

2. Gen-Set-State-Event - generates a SetState event for a primitive.

3. Gen-Update-Event - generates an Update event for a primitive.
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4. Gen-Transmit-Event - generates a Transmit event for the executive informing the

executive some exports have changed.

5. Gen-Remove-Event - generates a Remove event for the executive informing the ex-

ecutive that a primitive wants to discard a previously generated event.

6. Eliminate-Dupes - reduces event handling overhead by reviewing all events received

and eliminating redundant events based on the target and time fields within the

event.

All of these functions are invoked when the event-driven EXECUTE-SUBSYSTEM func-

tion is invoked and the simulation mode is event-driven.

6.1.4 Changes to the Semantic Checks. With the inclusion of the event-driven

simulation, the semantic checks were changed. A majority of the semantic checks are still

valid and required. However, depending on the simulation mode, checks that validate the

Update algorithm within a controller of a subsystem may or may not be "equired. Under

the event-driven simulation, the presence of an Update algorithm i •al. Conversely,

under the sequential mode, the Update algorithm is mandatory.

Also, since multiple independent subsystems are possible, the semantic checks that

validate the import and export connections for data communication needed modification.

Imports and exports within an independent subsystem are connected via source objects

and target objects. These source and target are converses that identify either the export

source that produces the information for this import or the import target that consumes

the information from this export. With the implementation of the application executive, a

connection object is now valid between the imports and exports in addition to the source
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and target objects. A connection object serves the same purpose as the source and target

objects; however, a connection object connects the imports and exports of independent

subsystems. For a detailed description of the connection object see (29). Figure 6.5 shows

the relationships of source, target and connection objects.

TARGET

L, I

Figure 6.5 Two Independent Subsystems showing the Relationships of Source, Target
and Connection Objects

6.1.5 Consolidation of Import Areas and Export Areas. As a result of the im-

plementation of the application executive functions within Architect (29), Architect must

be capable of handling multiple independent subsystems. Not only is it possible for the

application specialist to generate subsystems for the application being designed, but he can

also generate executive subsystems as well. Since the executive subsystems are essentially

independent of the application subsystems, there does not exist a parent-child relationship

between these two subsystems. An application subsystem and an executive subsystem are
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independent subsystems that communicate; they are essential to modeling the behavior of

an application, but neither is subordinate to the other.

Application Subsystem Executive Subsystem

I-/ I _'-_ I- I 1 -

Figure 6.6 Independent Subsystems Represented as an Executive Subsystem and an Ap-
plication Subsystem

6.1.5.1 Relocation of Import and Export Areas. These independent subsys-

tems forced a change to the original implementation of the import areas and export areas.

As originally implemented, import and export areas were associated with each subsystem

at each level of a subsystem's hierarchy (see Figure 6.7). This worked fine when compos-

ing an application consisting of a single independent subsystem; however, with multiple

independent subsystems, this implementation was no longer feasible. Allowing multiple

independent subsystems to connect to subordinate subsystems of other independent sub-

systems obligated subsystems to know more about their environment than intended by

the SEI (14:18). The OCU model was designed so that each level of abstraction within
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a subsystem only knew of its immediate subordinate objects. To resolve the contention,

the import areas and export areas were consolidated at the highest-level subsystem in an

independent subsystem, thus limiting the knowledge level of the lower-level subsystems

and primitives. Figure 6.6 above shows how the imports and exports have been consol-

idated at the highest-level subsystem in an independent subsystem. This is strictly an

implementation detail; conceptually, the imports and exports are the same as the SEI

intended.

Figure 6.7 Original Import Export Implementation

6.1.5.2 New Information in the Imports and Exports. Since the import area

and export area are at the highest-level subsystem, only the appropriate subsystem and

primitive can be allowed to access its import or export data. This was accomplished by

adding the owning subsystem information to the import and export areas and partitioning

the import and export areas.
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Further, a decision was made that the highest-level subsystem manages access to all

the imports and exports of all of its subordinate primitives. This management was required

since the executive could now change the data in an import area as a result of some type of

communication from another independent subsystem. When the data of an import area is

changed, the executive informs the highest-level subsystem of an independent subsystem

of the new data via a NewData event. Reception of a NewData event signals the highest-

level subsystem that some other independent subsystem has communicated with it, and it

needs to schedule some events based on the new data in its import area. The highest-level

subsystem only schedules update events; it collects the information needed to build the

update events directly from the information present in its import area. In keeping with

the SEI's intentions of anonymity of subsystems, the information required to generate an

update event had to be moved to the import area. The knowledge of a subsystem is still

limited, since a highest-level subsystem does not explicitly know of any subordinate objects

more than one level beneath it. The information required is present in the import area;

it is the routing scheme needed to help route an event to its intended target. Figures 6.8

shows a sample subsystem structure, and Figure 6.9 shows the information contained as

part of the imports and exports of the subsystem, respectively.

6.2 Conclusion

This chapter presented an overview of the detailed design of incorporating event

processing and management into Architect. Since Architect was designed around the

OCU software architectural model, the inclusion of an event processing capability had

to conform to the intent and spirit of the OCU model as defined by the SEI (14). All
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Figure 6.8 Sample Subsystem

decisions involving event processing have been presented in this chapter. The next chapter

shows the applications used to validate the changes to the import and export areas and

the applications used to verify the event-driven simulation capability. All the changes were

validated using domains available as a result of other research efforts (26, 27).
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Figure 6.9 Sample Imnport/Export Information and Data
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VII. Validation of Architect's Event-Driven Capability

7.1 Introduction

The event-driven capability of Architect was validated in multiple phases. One phase

of the validation was done using the primitives implemented as part of the original circuits

domain (3, 20); the other phase of validation was done using the application executive

implemented by (29) and the new domains incorporated by (26). A multi-phase approach

was the result of the development time of the application executive and the development

time of the new domains. Since the consolidation of imports and exports to the highest-

level subsystem was accomplished independently of the implementation of the event-driven

capability, these changes were also validated independently. As more of the event-driven

capability was realized, incremental validation was performed to validate this new capa-

bility. The rest of this chapter discusses the results of the validation.

7.2 Consolidation of Import and Export Areas

The validation of the consolidated import and export areas was completed using the

original gate primitives developed by (3, 20). Two scenarios for validation were performed,

one using a single independent subsystem and the other using multiple independent sub-

systems.

7.2.1 Single Independent Subsystem. This validation scenario consisted of two

different circuits. The first circuit was a simple design, as seen in Figure 7.1; Figure

7.2 shows some of the multiple configurations this circuit may have using subsystems and

primitives. The truth-table for the simple circuit is shown in Table 7.1. This circuit helped
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Figure 7.1 Simple Circuit for Independent Subsystem

Table 7.1 Truth-Table of Single Independent Circuit

Switch LEDI

by initially focusing on the complex interactions of a few subsystems and primitives, and

their respective imports and exports vice the large volume of interactions in a more complex

structure.

The next circuit used to test the import/export consolidation was more ambitious.

The circuit was a binary array multiplier and is shown in Figure 7.3. The configuration of

the subsystems and primitives for the binary array multiplier may be seen in Figure 7.4

and the truth table is in Table 7.2.

7.2.2 Multiple Independent Subsystems. Since Architect was soon to have mul-

tiple independent subsystems as part of an application, this validation included a circuit

that passed information between two independent subsystems. The circuit chosen was the

same circuit used in Figure 7.1, but its implementation was changed as illustrated in Figure

7.5.
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Figure 7.2 Simple Circuit as an Architect Implementation
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Figure 7.3 Binary Array Multiplier Circuit

Table 7.2 Truth-Table of the Binary Array Multiplier Circuit

BI Al Ai C3 I C2 I C1 I Co j
0 0 0 0 Off Off Off Off
0 0 0 1 Off Off Off Off
0 0 1 0 Off Off Off Off
0 0 1 1 Off Off Off Off
o 1 0 0 Off Off Off Off
0 1 0 1 Off Off Off On
0 1 1 0 Off Off On Off
0 1 1 1 Off Off On On
1 0 0 0 Off Off Off Off
1 0 0 1 Off Off On Off
1 0 1 0 Off On Off Off
1 0 1 1 Off On On Off
1 1 0 0 Off Off Off Off
1 1 0 1 Off Off On On
1 I1 1 0 Off On On Off

1 1 1 1 ]On Off Off On
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Figure 7.4 Architect Implementation of the Binary Array Multiplier

Figure 7.5 Architect Implementation of Simple Circuit with Independent Subsystems
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7.3 Initial Validation of the Event-Driven Capability

Due to the timing of the development of the application executive and the new

domain, the event-driven capability was initially tested using four primitives from the

new domain and a prototype application executive stub. This prototype executive was

nothing more than a pseudo application executive to provide an event manager capability

to simulate the behavior of the application, since the application executive being developed

as part of (29) was not ready for validation. The initial set of primitives provided by

the circuits event-driven domain were a switch, or gate, and gate, and LED. With the

initially limited capabilities of the validation software, the first circuits used for event-

driven validation were rudimentary. However, this independent validation allowed for

loose coupling between the forthcoming application executive and the event processing

capabilities of subsystems.

7.3.1 Single Independent Subsystem. The single independent circuit to test the

event-driven capability was again the simple circuit use in Figure 7.1. The proposed events

that needed to be generated and consumed as a result of simulating the circuit are shown in

Table 7.3. The events in the table are in the order that they are generated and consumed.

Thus, an Update event for And is generated before the Transmit event is (a Transmit event

is an executive event and is discussed in (29)). Likewise, the Update event is consumed

before the Transmit event is. The data under the "Information for Executive" field is

data required by the application executive but not used by the "mock-up" executive. The

SetState event above the double line is obtained from the application specialist during the

application definition process; it was not generated as part of the event-driven simulation.
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Table 7.3 Events and Their Order for Single Independent Subsystem

Event Type ]j Target ] Information for Executive

SetState Switch _

Update And
Transmit Out 1, Switch
SetState And
Update LED
Transmit Out 1, And
SetState LED

Table 7.4 Events and Their Order for Multiple Independent Subsystems

Event Type Target Information for Executive
SetState Switch

Update And
Transmit Out 1, Switch
SetState And
Transmit Out 1, And
NewData Subsystem2
Update LED
SetState LED

7.3.2 Multiple Independent Subsystems. The multiple independent circuit to test

the event-driven capability was the same circuit presented in Section 7.3.1 but implemented

in Architect as Figure 7.5. The proposed events that needed to be generated and consumed

as a result of simulating the circuit are shown in Table 7.4. As before, the SetState event

above the double line is obtained from the application specialist during the application

definition process; it was not generated as part of the event-driven simulation.

7.4 Final Validation of the Event-Driven Capability

7.4.1 Single Independent Subsystem. The single independent circuit to test

the final event-driven capability is shown in Figure 7.6 and its corresponding Architect

implementation in Figure 7.7. The truth-table is contained in Table 7.5, and the proposed
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Figure 7.6 Simple Circuit for Event-Driven Validation

Table 7.5 Truth-Table of Simple Circuit for Initial Event-Driven Validation

Switch 2 Switch 1 [ Led
0 0 On
0 1 On

1 0 On
1 1 Off

events and their order for generation and consumption as a result of simulating the circuit

are shown in Table 7.6. Once again, the SetState events above the double line are input

as part of the application definition process, they were not generated as part of the event-

driven simulation.

7.4.2 Multiple Independent Subsystems. The multiple independent circuit to

test the final event-driven capability was not much more involved than the circuit in Sec-

tion 7.4.1, and it is shown in Figure 7.8. However, the Architect implementation of the

circuit was much more involved, as shown in Figure 7.9. The truth-table for the circuit in

Figure 7.6 is contained in Table 7.7. The proposed events and their order of consumption

as a result of simulating the circuit are contained in Table 7.8. The SetState events above

the double line are obtained from the application specialist as part of the application defi-

nition. Since there are multiple independent subsystems in this simulation, the ordering of

the generation of events may vary; however, what is important is the fact that the events

were generated and the events were consumed in the proper order. The lines separating
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Figure 7.7 Simple Circuit for Event-Driven Validation in Architect

Table 7.6 Events and Their Order For Final Simple Circuit Validation

Event Type ]J Target Information for Executive

SdtState Switch 1

SetState Switch 2
Update And

Transmit Out 1, Switch 1
Transmit Out 1, Switch 2
SetState And

Update Not
Transmit Out 1, And
SetState Not
Update LED
Transmit Out 1, Not
SetState LED I
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Figure 7.8 Enhanced Circuit for Event-Driven Validation
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Figure 7.9 Enhanced Circuit for Event-Driven Validation in Architect

the events show what events occur together or at a singie point in time. As an example,

the first five events after the double line are executed at a single point in time during the

simulation; the next three events occur at some future point of time in the simulation.

7.5 Conclusions

The multi-phase approach for validation and verification of Architect's new capabil-

ities proved beneficial for several reasons:
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Table 7.7 Truth-Table for Enhanced Circuit Validation

Switch 3 Switch 2 Switch 1 i Ledi

0 0 0 On
0 0 1 On
0 1 0 On
0 1 1 On
1 0 0 On
1 0 1 On
1 1 0 On
1 1 1 Off

Table 7.8 Events and Their Order For Final Enhanced Circuit Validation

Event Type Target Information for Executive

SetState Switch 1
SetState Switch 2
SetState Switch 3

Update And 1
Transmit Out 1, Switch 1
Transmit Out 1, Switch 2
Update And 2
Transmit Out 1, Switch 3
SetState And 1
Transmit Out 1, And I
SetState And 2
NewData Subsystem 3
Update And 2
SetState And 2
Update Not
Transmit Out 1, And 2
SetState Not
Update LED
Transmit Out 1, Not
SetState LED
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1. The initial phase allowed for the overlap of different development efforts for the new

domains, application executive, and event-driven simulation capabilities (29, 26).

2. The initial phase of moving the import/export areas was completed prior to any

of the other efforts; as such, the code was used as the baseline for the application

executive and the development of new domain primitives.

3. The application "mock-up" and new domain primitives resulted in the event-driven

capabilities for Architect being available prior to full implementation of the applica-

tion executive. Again, this code was used as a baseline for further development.

4. The small increments of changes resulted in focusing on the task at hand. Errors

could be isolated and repaired quickly by being able to identify what code had in-

troduced the error.

5. The small increments also resulted in a staged development. As each phase of de-

velopment was validated, the next phase was developed using previously developed

tools or functions.

6. Lastly, during final integration of the event-driven capability, application executive

and new domains, errors were quickly isolated.
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VIII. Conclusions and Recommendations

8.1 Summary of This Research

The primary purpose of this research was to develop a framework for comparing

software architectures. The framework had to be capable of capturing the salient points

of a software architecture and being applied to several architectures without tailoring.

A secondary effort was to modify the simulation capability of a prototype domain-

oriented application composition system called Architect, to include events, event handling,

and event management.

8.1.1 Framework for Comparing Software Architectures. The primary purpose

for developing a framework for comparing software architectures was to evaluate the OCU

model for its suitability as a software architectural model for application composition and

generation systems. A secondary purpose was to identify potential sources for design reuse.

The design reuse may be at the component (model) level or may be a higher abstraction

such as an architectural entity. By comparing the components, architectural fragments, and

the architectures as a whole, the similarities and differences of the structure, information,

and semantics become evident and can be identified. These similarities and differences

of architectural entities can ultimately lead to a mapping between architectures and their

components.

The scope for developing the framework for comparing software architectures was

limited to developing object diagrams to show the syntax (structure) of an architecture.

Also, the scope included using the axiomatic approach to show the semantics (behavior)

of an architecture's components identified in the object diagram. The axiomatic approach
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includes the definition of an abstract program P that maps the state space of some archi-

tectural entity to another state space.

8.1.2 Specific Conclusions About Software Architectures. The framework identi-

fied above was used to analyze the software architectures of VHDL, MetaH, ttRapide, IBM

ADAGE and OCU. The results of the structural analysis of the architectures revealed:

1. All architectural components have some way to retain their state information. In

the lowest-level constructs, the state information is retained in attributes; in higher-

level constructs, state information is captured in the subordinate objects, as well as

attributes.

2. All components of the different architectures have a way to change state; none are

static. Some architectures use operations to change state, some use an update algo-

rithm or an execution path, while others employ a transform.

3. All of the architectures incorporate events and event processing.

4. All constructs have a way to interface with their environment. Some components get

their information from inputs, while others get their information from events.

5. All the software architectures analyzed employ a layered architecture. The layered

architecture results in different levels of abstractions, with the higher-level abstrac-

tions requesting services from lower-level abstractions.

A semantic comparison of the software architectures revealed the following:
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1. There does not exist a one-to-one equivalence between any of the architectural entities

among the architectures. The transformation process P performs the transformation

from state space to state space differently for the components of each architecture.

2. The lowest-level constructs of an architecture only change the state of their local

attributes and output values.

3. The lowest-level constructs are passive or reactive in nature.

4. Architectural entities composed of lower-level constructs change state based on the

state changes in their subordinate constructs. If an entity has any local state infor-

mation, this local information changes as a result of a transformation. Each level

of abstraction within an architecture is only able to modify the state of components

directly subordinate. In effect, the scope of change is limited to one level at a time.

8.2 General Conclusions About Software Architectures

The framework developed as part of this thesis effort had some strong points and some

weak points. The strong points are that the architectural entities of a software architecture

are readily evident as a result of the object diagram, and the variants and invariants of

an entity are evident as a result of the semantics presented using the axiomatic approach.

This framework showed that semantically and syntactically there was no direct mapping

between architectural entities of different architectures. However, the framework highlights

the variant information of an entity. If any type of transformation is to be possible, the

information and behavior of an entity identified by this framework must be preserved as a

result of a transformation.
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Also, this framework highlighted that several common elements seem to be included

in all the software architectures. The common elements identified in this research effort

may possibly lead to the development of a meta-model for software architectures.

Finally, the framework characterized some aspects (or properties) of architectures

that are desirable. While no metrics currently exist for evaluating software architectures,

this research is an initial step in identifying architectural properties and corresponding

metrics for characterizing software architectures.

A weak point of this research is that it does not give any insight into the development

of the abstract program P for the axiomatic approach. It does present the precondition

on the state space of an entity and the postcondition that need to be maintained on the

variants as a result of the state-space transformation process of P, but it does not provide

details of how to derive P.

As a result of developing the framework for comparing the architectures and perform-

ing the comparisons of the various software architectures, it can be concluded that the OCU

model has all the elements necessary to allow Architect to mature into a domain-oriented

application composition and generation system that is able to accept system specifications

from an application specialist and produce verifiable software. The syntax is similar to

other successful software architectures and the semantics are comparable to all the other

architectures as well.

8.2.1 Incorporation of Event Driven Capability into Architect. A need to in-

corporate event management, handling, and processing into Architect was identified by

previous research efforts. Since the initial implementation of Architect employs the OCU
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architectural model, the inclusion of events and the associated processing requirements

had to conform to the OCU model as specified by the SEI. However, SEI documentation

on the OCU model makes no mention of events or event processing. Therefore, I had to

extrapolate the intended meaning of the OCU model for the inclusion of events. The scope

of this work was limited to designing the event management, processing, and handling ca-

pabilities of the subsystems and primitives within Architect. The operating environment

of the application executive was addressed in a separate effort.

The following was accomplished as a result of incorporating events into Architect:

1. The type of events and their corresponding formats were identified and implemented

within the architecture of the OCU model.

2. Event persistence was accomplished via the InEvent and OutEvent areas attached

to each subsystem.

3. In keeping with the OCU spirit as intended by the SEI, subsystems consume events,

as this falls in the purview of "locus of mission". After consuming the event, a

subsystem invokes a primitive to supply the service intended by the event.

4. The flow of events through the subsystem structure was identified. Subsystems

needed to be able to interrogate events to determine the event's target. After deter-

mining the event's target, a subsystem processes the event or routes it to a subordi-

nate subsystem.

5. In preserving the sequential execution model as implemented by (3, 20), Architect

now has two execution functions; one execution function simulates non-event-driven

sequential processing and the other simulates an event-driven model.
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6. New functions were implemented within Architect to generate SetState, Update,

"Transmit, and Remove events.

7. The semantic checks were updated to determine the mode of execution and perform

additional checks as required.

8. The import and export areas of subordinate subsystems were consolidated to the

import and export areas of the highest-level subsystem. With the consolidation of

the imports and exports, the information of an import or export object was expanded

to include the owning subsystem of the import or export and a routing scheme to

locate the primitive that produced or consumed the particular import or export.

With the inclusion of events into Architect, Architect is closer to allowing the sim-

ulation of models that require concurrent behaviors. This allows for expansion to new

domains that require concurrency to more realistically represent real world entities.

8.3 Recommendations for Future Research

The following is a list of items that were not addressed as part of this research effort

and should be addressed in future research efforts:

1. Further validation of event-driven capabilities. The event-driven simulation capa-

bility was initially demonstrated using the event-driven circuits domain. With the

expansion of Architect's technology base as a result of (27, 26), these domains can

be transformed into event-driven domains to further validate the implementation of

events within Architect.
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2. Incorporation of a "mixed-mode" execution capability in the subsystems. The initial

implementation of events into Architect allows only one mode of execution for a

developed application. There are circumstances where we want some independent

subsystems of an application to execute in a non-event-driven sequential mode while

others execute in an event-driven mode.

3. Concurrent simulation. The event-driven simulation capability within Architect al-

lows for only a single thread of control within an application. Expand Architect

to include an event-driven concurrent simulation capability with multiple threads of

control. A decision will have to be made as to what level of nesting will be allowed for

the concurrent processing of subsystems. The level of concurrency must determine

whether only the top level independent subsystems execute concurrently, or whether

subsystems subordinate to the top level subsystems execute concurrently.

4. Causality dependency. The initial event-driven capability incorporated within the

definition of the controller of a subsystem does not check for any causality dependen-

cies. The subsystem controller should be modified to allow for the specification of

causal dependencies on the order of events that must occur prior to the execution of

the subsystem. These causality dependencies prevent the execution of a subsystem

if all the required information or dependencies between independent subsystems are

not met.

5. Modeling of real-time systems. Architect does not employ any type of time con-

straints in the execution of an application. Expand Architect to include the modelling

of domains that incorporate the use of real-time constraints.
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6. Architectural transformation. This research identified components of alternative ar-

chitectures along with the associated precondition and postcondition for their state

space. Future research should be done on transforming an architectural compo-

nent and having Architect employ the component within one of its compositions.

This transformation should be behavior-preserving such that the Architect meets

the entity's preconditions, and after execution, Architect satisfies the entity's post-

conditions.

7. Meta-Model for architectures. The framework developed as part of this research

identified structural components common to all five of the software architectures

analyzed. Research needs to be continued on possibly identifying a meta-model

for software architectures. The meta-model will be an aid in the transformation of

components between architectures.

8. Basis for an architecture metric system. Another result of this research was the iden-

tification of some characteristics that are necessary within any software architecture.

The two characteristics identified were the encapsulation of state and information,

and the limitation of the scope of control of an architectural entity. Further research

needs to be done on identifying metrics for evaluating software architectures.

8.4 Concluding Remarks

By identifying a framework for analyzing software architectures, the similarities and

differences among architectures were identified. With these qualities evident, a better

assessment can be made as to whether an entity or component from another architecture

or domain is suitable for inclusion within a system or domain being developed.
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Architect brings software engineering a step closer to being a true engineering dis-

cipline. It contains a public technology base of certified components, and it provides a

means to verify a design (through behavior modeling) prior to full scale development. It

provides the capability to model behaviors of objects that are sequential in nature, as well

as being able to model the relationships between independent objects. With the framework

presented in this thesis, Architect in the near future may be able to incorporate models and

components of other domains and architectures directly; thus, Architect may provide for

the reuse of designs that cross domain boundaries. All of the aforementioned capabilities

are needed to position the software industry to attain the "megaprogramming" environ-

ment needed to allow software systems to be developed on time, within budget, error-free

and most importantly, meeting user's requirements.
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